1
|
Sabatini F, Maresca E, Aulitto M, Termopoli V, De Risi A, Correggia M, Fiorentino G, Consonni V, Gosetti F, Orlandi M, Lange H, Contursi P. Exploiting agri-food residues for kombucha tea and bacterial cellulose production. Int J Biol Macromol 2025; 302:140293. [PMID: 39864711 DOI: 10.1016/j.ijbiomac.2025.140293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Bio-valorization of agri-food wastes lies in their possible conversion into fermented foodstuffs/beverages and/or biodegradable polymers such as bacterial cellulose. In this study, three different kombucha cultures were formulated using agri-food waste materials, citrus fruit residues and used coffee grounds, as alternative carbon and nitrogen sources, respectively. Over 21 days of fermentation, the kinetic profile was followed by monitoring cell density, pH variation, minerals, trace elements and production of bacterial cellulose. Moreover, the total phenolic and radical scavenging capacity was measured by spectrophotometric tests on the beverage and bacterial cellulose. Several classes of compounds were detected by gas chromatography coupled with mass spectrometry performing extractions on the headspace above fresh kombucha beverages and their lyophilized fractions, using solid phase micro extraction and liquid phase extraction, respectively. The obtained results allowed assessing molecular profiles of each kombucha beverages. A chemometric meta-analysis of the data revealed the individual impacts of the single ingredients and the effects of the fermentation process.
Collapse
Affiliation(s)
- Francesca Sabatini
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy
| | - Emanuela Maresca
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Martina Aulitto
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Veronica Termopoli
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy
| | - Arianna De Risi
- NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy
| | - Monica Correggia
- University of Naples Federico II, Department of Biology, Naples, Italy
| | | | - Viviana Consonni
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy
| | - Fabio Gosetti
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Orlandi
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy.
| | - Heiko Lange
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Luleå, Sweden
| | - Patrizia Contursi
- NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy.
| |
Collapse
|
2
|
Salas-Millán JÁ, Aguayo E. Fermentation for Revalorisation of Fruit and Vegetable By-Products: A Sustainable Approach Towards Minimising Food Loss and Waste. Foods 2024; 13:3680. [PMID: 39594095 PMCID: PMC11594132 DOI: 10.3390/foods13223680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
In a world increasingly focused on sustainability and integrated resource use, the revalorisation of horticultural by-products is emerging as a key strategy to minimise food loss and waste while maximising value within the food supply chain. Fermentation, one of the earliest and most versatile food processing techniques, utilises microorganisms or enzymes to induce desirable biochemical transformations that enhance the nutritional value, digestibility, safety, and sensory properties of food products. This process has been identified as a promising method for producing novel, high-value food products from discarded or non-aesthetic fruits and vegetables that fail to meet commercial standards due to aesthetic factors such as size or appearance. Besides waste reduction, fermentation enables the production of functional beverages and foods enriched with probiotics, antioxidants, and other bioactive compounds, depending on the specific horticultural matrix and the types of microorganisms employed. This review explores the current bioprocesses used or under investigation, such as alcoholic, lactic, and acetic acid fermentation, for the revalorisation of fruit and vegetable by-products, with particular emphasis on how fermentation can transform these by-products into valuable foods and ingredients for human consumption, contributing to a more sustainable and circular food system.
Collapse
Affiliation(s)
- José Ángel Salas-Millán
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
- Food Quality and Health Group, Institute of Plant Biotechnology (IBV-UPCT), Campus Muralla Del Mar, 30202 Cartagena, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
- Food Quality and Health Group, Institute of Plant Biotechnology (IBV-UPCT), Campus Muralla Del Mar, 30202 Cartagena, Spain
| |
Collapse
|
3
|
Zhao C, Liu X, Tian H, Li Z. Integrated characterization of arabica coffee husk tea using flavoromics, targeted screening, and in silico approaches. Food Chem X 2024; 23:101556. [PMID: 39007118 PMCID: PMC11245994 DOI: 10.1016/j.fochx.2024.101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
This study aimed to identify the key volatile compounds in two types of processed arabica coffee husk tea, elucidate their olfactory characteristics, and investigate their antioxidant and anti-inflammatory activities. Sensory evaluation indicated differences between the two groups. A total of 64 and 99 compounds were identified in the C and FC groups, respectively, with 5 identified as key aroma compounds (ROAV≥1). Molecular simulations indicated that four common key aroma compounds were successfully docked with OR1A1 and OR5M3 receptors, forming stable complexes. Furthermore, 14 volatile compounds interacted with 140 targets associated with oxidation and inflammation, linking to 919 gene ontology (GO) terms and 135 kyoto encyclopedia of genes and genomes (KEGG) pathways. Molecular simulations revealed that these volatile components showed antioxidant and anti-inflammatory effects by interacting with core receptors through several forces, including van der Waals, Pi-alkyl, and Pi-cation interactions and hydrogen bonds.
Collapse
Affiliation(s)
- Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiuwei Liu
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Hao Tian
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Zelin Li
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Bressani APP, Casimiro LKS, Martinez SJ, Dias DR, Schwan RF. Kombucha with yam: Comprehensive biochemical, microbiological, and sensory characteristics. Food Res Int 2024; 192:114762. [PMID: 39147483 DOI: 10.1016/j.foodres.2024.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Consumer demand for functional foods has increased, helping to popularize and increase the consumption of Kombucha. Other substrates have been used together with tea to improve the functional and sensory properties of the beverage. Thus, this study evaluated the comprehensive biochemical, microbiological, and sensory characteristics of kombuchas fermented with green tea (Camellia sinensis) and different concentrations of yam (0, 10, and 20 % w/v). Based on pre-tests to detect the best concentration of yam in the beverage (10, 20, 30, and 40 %) and fermentation time (5, 7, and 14 days),the concentrations of 10 and 20 % of yam and five days of fermentation were selected through pH, °Brix, and sensory analysis. During the kombucha fermentation, there was a decrease in °Brix and pH. Sucrose, glucose, fructose, citric, and succinic acids were related to the beginning of fermentation, and lactic and acetic acids were more related to the end of fermentation in the treatment containing 20 % yam. The fermentation time did not change the color of the kombucha. Fatty acids, phenols, terpenoids, and alcohols were the volatile groups with the most compounds identified. Only two yeast genera were identified (Brettanomyces bruxellensis and Pichia membranifaciens), and bacteria of the genera Acetobacter, Lactobacillus, Pantoea, Pseudomonas, Azospirillum, and Enterobacter. The beverage control showed less turbidity and more clear. The fruity descriptor was more perceived in treatments with yam. However, the perception of the apple descriptor decreases as the yam concentration increases. The yam's concentration alters the kombucha's microbiota and sensory characteristics, mainly appearance and acidity. Kombucha fermentation using yam extract is viable, and the product is sensorially accepted. However, technological improvements, such as yam flour, could be made mainly for appearance and taste attributes.
Collapse
Affiliation(s)
| | | | | | - Disney Ribeiro Dias
- Food Science Department, Federal University of Lavras, CEP 37200-000, Lavras, MG, Brazil.
| | - Rosane Freitas Schwan
- Biology Department, Federal University of Lavras, CEP 37200-000, Lavras, MG, Brazil.
| |
Collapse
|
5
|
Sales AL, Cunha SC, Ferreira IM, Morgado J, Melo L, DePaula J, Miguel MAL, Farah A. Volatilome, Microbial, and Sensory Profiles of Coffee Leaf and Coffee Leaf-Toasted Maté Kombuchas. Foods 2024; 13:484. [PMID: 38338619 PMCID: PMC10855110 DOI: 10.3390/foods13030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Kombucha is a fermented beverage traditionally made from the leaves of Camelia sinensis. The market has drastically expanded recently, and the beverage has become more elaborated with new, healthy food materials and flavors. Pruning and harvesting during coffee production may generate tons of coffee leaves that are discarded although they contain substantial amounts of bioactive compounds, including those found in maté tea and coffee seeds. This study characterized the changes in volatilome, microbial, and sensory profiles of pure and blended arabica coffee leaf tea kombuchas between 3-9 days of fermentation. Acceptance was also evaluated by consumers from Rio de Janeiro (n = 103). Kombuchas (K) were prepared using black tea kombucha starter (BTKS) (10%), sucrose (10%), a symbiotic culture of Bacteria and Yeasts (SCOBY) (2.5%), and a pure coffee leaf infusion (CL) or a 50:50 blend with toasted maté infusion (CL-TM) at 2.5%. The RATA test was chosen for sensory profile characterization. One hundred volatile organic compounds were identified when all infusions and kombucha samples were considered. The potential impact compounds identified in CL K and CL-TM K were: methyl salicylate, benzaldehyde, hexanal, nonanal, pentadecanal, phenylethyl-alcohol, cedrol, 3,5-octadien-2-one, β-damascenone, α-ionone, β-ionone, acetic acid, caproic acid, octanoic acid, nonanoic acid, decanoic acid, isovaleric acid, linalool, (S)-dihydroactinidiolide, isoamyl alcohol, ethyl hexanoate, and geranyl acetone. Aroma and flavor descriptors with higher intensities in CL K included fruity, peach, sweet, and herbal, while CL-TM K included additional toasted mate notes. The highest mean acceptance score was given to CL-TM K and CL K on day 3 (6.6 and 6.4, respectively, on a nine-point scale). Arabica coffee leaf can be a co-product with similar fingerprinting to maté and black tea, which can be explored for the elaboration of potentially healthy fermented beverages in food industries.
Collapse
Affiliation(s)
- Amanda Luísa Sales
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (J.D.)
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro 21941-902, Brazil
| | - Sara C. Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.)
| | - Isabel M.P.L.V.O. Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.)
| | - Jéssika Morgado
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (J.D.)
| | - Lauro Melo
- Laboratório de Análise Sensorial e Estudos do Consumidor (LASEC), Escola de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, CT, Bl. E, Rio de Janeiro 21941-909, Brazil;
| | - Juliana DePaula
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (J.D.)
| | - Marco Antonio L. Miguel
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro 21941-902, Brazil
| | - Adriana Farah
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (J.D.)
| |
Collapse
|
6
|
Dartora B, Hickert LR, Fabricio MF, Ayub MAZ, Furlan JM, Wagner R, Perez KJ, Sant'Anna V. Understanding the effect of fermentation time on physicochemical characteristics, sensory attributes, and volatile compounds in green tea kombucha. Food Res Int 2023; 174:113569. [PMID: 37986521 DOI: 10.1016/j.foodres.2023.113569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Kombuchas are a trend in the fermented beverage field and the effect of fermentation time on their characteristics is necessary to better understand the process, mainly concerning volatile compounds, which are scarce information in the current literature. Thus, the present work aimed to evaluate the features of green tea kombucha during fermentation, monitoring the changes in pH, acidity, turbidity, polyphenols, ethanol, acetic acid, volatile compounds, and sensory profile and acceptance up to 14 days of fermentation. Kombuchas' pH and acidity decreased through time as expected, but after 4 days of fermentation, the beverage exceeded the Brazilian legal limits of acidity (130 mEq/L) and produced more than 0.5% AVB, which labels the beverage as alcoholic. Total polyphenols and condensed tannins content enhanced until the seventh day of fermentation and remained constant. Fermentation highly impacted the aroma of the infusion with a high formation of volatile acids, such as alcohols, esters, and ketones. Aldehydes were degraded during the bioprocess. Sensory characterization of kombucha showed that fermentation of 4 days increased perceived turbidity; vinegar, citric fruit, acid, and alcoholic aroma; and produced the beverage with sour, bitter, and vinegar flavor. Thus, the fermentation time of kombuchas must be controlled as they rapidly change and impact on the physicochemical parameters and sensory profile of the beverage can be negative.
Collapse
Affiliation(s)
- Bruna Dartora
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado, Rio Grande do Sul, Brazil
| | - Lilian Raquel Hickert
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado, Rio Grande do Sul, Brazil
| | | | - Marco Antônio Zachia Ayub
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria, Camobi, Santa Maria, RS, Brazil
| | - Karla Joseane Perez
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado, Rio Grande do Sul, Brazil
| | - Voltaire Sant'Anna
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado, Rio Grande do Sul, Brazil.
| |
Collapse
|