1
|
Zhang H, Liu S, Li S, Chen X, Xu M, Su Y, Qiao K, Chen X, Chen B, Zhong H, Lin H, Liu Z. The Effects of Four Different Thawing Methods on Quality Indicators of Amphioctopus neglectus. Foods 2024; 13:1234. [PMID: 38672906 PMCID: PMC11049476 DOI: 10.3390/foods13081234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Amphioctopus neglectus is a species of octopus that is favored by consumers due to its rich nutrient profile. To investigate the influence of different thawing methods on the quality of octopus meat, we employed four distinct thawing methods: air thawing (AT), hydrostatic thawing (HT), flowing water thawing (FWT), and microwave thawing (MT). We then explored the differences in texture, color, water retention, pH, total volatile basic nitrogen (TVB-N), total sulfhydryl content, Ca2+-ATPase activity, and myofibrillar protein, among other quality indicators in response to these methods, and used a low-field nuclear magnetic resonance analyzer to assess the water migration that occurred during the thawing process. The results revealed that AT had the longest thawing time, leading to oxidation-induced protein denaturation, myofibrillar protein damage, and a significant decrease in water retention. Additionally, when this method was utilized, the content of TVB-N was significantly higher than in the other three groups. HT, to a certain extent, isolated the oxygen in the meat and thus alleviated protein oxidation, allowing higher levels of Ca2+-ATPase activity, sulfhydryl content, and springiness to be maintained. However, HT had a longer duration: 2.95 times that of FWT, resulting in a 9.84% higher cooking loss and a 28.21% higher TVB-N content compared to FWT. MT had the shortest thawing time, yielding the lowest content of TVB-N. However, uneven heating and in some cases overcooking occurred, severely damaging the protein structure, with a concurrent increase in thawing loss, W value, hardness, and shear force. Meanwhile, FWT improved the L*, W* and b* values of octopus meat, enhancing its color and water retention. The myofibrillar protein (MP) concentration was also the highest after FWT, with clearer subunit bands in SDS-PAGE electrophoresis, indicating that less degradation occurred and allowing greater springiness, increased Ca2+-ATPase activity, and a higher sulfhydryl content to be maintained. This suggests that FWT has an inhibitory effect on oxidation, alleviating protein oxidation degradation and preserving the quality of the meat. In conclusion, FWT outperformed the other three thawing methods, effectively minimizing adverse changes during thawing and successfully maintaining the quality of octopus meat.
Collapse
Affiliation(s)
- Huixin Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (H.L.)
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (M.X.); (Y.S.); (K.Q.); (B.C.)
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (M.X.); (Y.S.); (K.Q.); (B.C.)
| | - Shuigen Li
- Fujian Fisheries Technical Extension Station, Fuzhou 350002, China;
| | - Xiaoe Chen
- College of Food and Pharmacy, Zhejiang Ocean University, State Key Laboratory of Aquatic Products Processing of Zhejiang Province, Zhoushan 316022, China;
| | - Min Xu
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (M.X.); (Y.S.); (K.Q.); (B.C.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China;
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (M.X.); (Y.S.); (K.Q.); (B.C.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China;
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (M.X.); (Y.S.); (K.Q.); (B.C.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China;
| | - Xiaoting Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China;
| | - Bei Chen
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (M.X.); (Y.S.); (K.Q.); (B.C.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China;
| | - Hong Zhong
- Dongshan Paul Food Co., Ltd., Zhangzhou 363400, China;
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (H.L.)
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China;
| |
Collapse
|
2
|
Monteiro JP, Domingues MR, Calado R. Marine Animal Co-Products-How Improving Their Use as Rich Sources of Health-Promoting Lipids Can Foster Sustainability. Mar Drugs 2024; 22:73. [PMID: 38393044 PMCID: PMC10890326 DOI: 10.3390/md22020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.
Collapse
Affiliation(s)
- João Pedro Monteiro
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|