1
|
Cechin CDF, Carvalho GG, Kabuki DY. Occurrence, genetic characterization, and antibiotic susceptibility of Cronobacter spp. isolated from low water activity functional foods in Brazil. Food Microbiol 2024; 122:104570. [PMID: 38839229 DOI: 10.1016/j.fm.2024.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Cronobacter spp. are bacterial pathogens isolated from a wide variety of foods. This study aims at evaluating the occurrence of Cronobacter spp. in low water activity functional food samples, detect the presence of virulence genes, and determine the antibiotic susceptibility of strains. From 105 samples, 38 (36.2%) were contaminated with Cronobacter spp. The species identified by polymerase chain reaction (PCR) and sequencing analyses (rpoB and fusA genes, respectively) were C. sakazakii (60.3%), C. dublinensis (25.4%), C. turincensis (9.5%), and C. malonaticus (4.8%). Nineteen fusA alleles were identified, including four new alleles. The virulence genes were identified by PCR and all isolates were positive for ompX and sodA genes, 60.3% to cpa gene, and 58.7% to hly gene. Using the disk diffusion method, antibiotic susceptibility to twelve antibiotics was assessed twice, separated by a 19-month period. In the first test, the isolates showed diverse antibiotic susceptibility profiles, with nineteen isolates (30.2%) being multi-drug resistant (resistant to three or more antibiotic classes), in the second, the isolates were susceptible to all antibiotics. Cronobacter spp. in functional foods demonstrates the need for continued investigation of this pathogen in foods, and further research is needed to clarify the loss of resistance of Cronobacter strains.
Collapse
Affiliation(s)
- Carine da Fonseca Cechin
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos, Departamento de Ciência de Alimentos e Nutrição, Campinas, São Paulo, Brazil.
| | - Gabriela Guimarães Carvalho
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos, Departamento de Ciência de Alimentos e Nutrição, Campinas, São Paulo, Brazil; Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Campinas, São Paulo, Brazil.
| | - Dirce Yorika Kabuki
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos, Departamento de Ciência de Alimentos e Nutrição, Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Samadpour M, Benoit L, Myoda S, Hans B, Nadala C, Kim SH, Themeli E, Cantera R, Nguyen T, Richter H. Microbiological survey and genomic analysis of Cronobacter sakazakii strains isolated from US households and retail foods. Appl Environ Microbiol 2024; 90:e0070024. [PMID: 38953659 PMCID: PMC11267904 DOI: 10.1128/aem.00700-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Cronobacter species are opportunistic pathogens that are capable of causing morbidity and mortality, particularly in infants. Although the transmission dynamics involved in Cronobacter infections remain largely unknown, contaminated powdered infant formula (PIF) has been linked to 30% of Cronobacter sakazakii cases involving invasive illness in infants. As several lines of evidence have implicated the domestic environment in PIF contamination, we undertook a microbiological survey of homes (N = 263) across the US. Cronobacter spp. and C. sakazakii were isolated from 36.1% and 24.7% of US homes, respectively, with higher recovery rates observed for floor and kitchen surfaces. Multi-locus sequence typing indicated that the dominant strain was C. sakazakii ST4, the sequence type most commonly associated with neonatal meningitis. For comparison purposes, retail foods (N = 4,009) were also surveyed, with the highest contamination frequencies (10.1%-26.3%) seen for nut products, seeds, and grains/baked goods/flours. The sequence type profile of isolates recovered from homes mirrored that of isolates recovered from retail foods, with increased representation of ST1, ST4, ST13, ST17, and ST40. Analysis of 386 whole genomic sequences revealed significant diversity. Redundancies were only observed for isolates recovered from within the same domicile, and there were no identical matches with sequences archived at the NCBI pathogen database. Genes coding for putative virulence and antibiotic resistance factors did not segregate with clinically significant sequence types. Collectively, these findings support the possibility that contamination events occurring within the home should not be overlooked as a contributor to community-onset Cronobacter infections. IMPORTANCE Cronobacter sakazakii is an opportunistic pathogen that can cause significant morbidity and mortality in neonates. Its transmission dynamics are poorly understood, though powered infant formula (PIF) is thought to be the major transmission vehicle. How the PIF becomes contaminated remains unknown. Our survey shows that roughly 1/4 of US homes are contaminated with Cronobacter sakazakii, particularly in the kitchen setting. Our analyses suggest that the domestic environment may contribute to contamination of PIF and provides insights into mitigating the risk of transmission.
Collapse
Affiliation(s)
- Mansour Samadpour
- IEH Laboratories and Consulting Group Inc., Lake Forest Park, Washington, USA
| | - Lora Benoit
- IEH Laboratories and Consulting Group Inc., Lake Forest Park, Washington, USA
| | - Sam Myoda
- IEH Laboratories and Consulting Group Inc., Lake Forest Park, Washington, USA
| | - Bada Hans
- IEH Laboratories and Consulting Group Inc., Lake Forest Park, Washington, USA
| | - Cesar Nadala
- IEH Laboratories and Consulting Group Inc., Lake Forest Park, Washington, USA
| | - Seong Hong Kim
- IEH Laboratories and Consulting Group Inc., Lake Forest Park, Washington, USA
| | - Eni Themeli
- IEH Laboratories and Consulting Group Inc., Lake Forest Park, Washington, USA
| | - Ruth Cantera
- IEH Laboratories and Consulting Group Inc., Lake Forest Park, Washington, USA
| | - Truyen Nguyen
- IEH Laboratories and Consulting Group Inc., Lake Forest Park, Washington, USA
| | - Hans Richter
- IEH Laboratories and Consulting Group Inc., Lake Forest Park, Washington, USA
| |
Collapse
|
3
|
Cechin CDF, Carvalho GG, Bastos CP, Kabuki DY. Cronobacter spp. in foods of plant origin: occurrence, contamination routes, and pathogenic potential. Crit Rev Food Sci Nutr 2023; 63:12398-12412. [PMID: 35866516 DOI: 10.1080/10408398.2022.2101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cronobacter is an emerging bacterial pathogen associated with infections such as necrotizing enterocolitis, sepsis, and meningitis in neonates and infants, related to the consumption of powdered infant formula. In addition, this bacterium can also cause infections in adults by the ingestion of other foods. Thus, this review article aims to report the occurrence and prevalence of Cronobacter spp. in foods of plant origin, as well as the possible sources and routes of contamination in these products, and the presence of pathogenic strains in these foods. Cronobacter was present in a wide variety of cereal-based foods, vegetables, herbs, spices, ready-to-eat foods, and foods from other categories. This pathogen was also found in cultivation environments, such as soils, compost, animal feces, rice and vegetable crops, as well as food processing industries, and domestic environments, thus demonstrating possible contamination routes. Furthermore, sequence types (ST) involved in clinical cases and isolates resistant to antibiotics were found in Cronobacter strains isolated from food of plant origin. The identification of Cronobacter spp. in plant-based foods is of great importance to better elucidate the vehicles and routes of contamination in the primary production chain and processing facility, until the final consumption of the food, to prevent infections.
Collapse
Affiliation(s)
- Carine da Fonseca Cechin
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela Guimarães Carvalho
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Caroline Peixoto Bastos
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Li Q, Li C, Chen L, Cai Z, Wu S, Gu Q, Zhang Y, Wei X, Zhang J, Yang X, Zhang S, Ye Q, Wu Q. Cronobacter spp. Isolated from Quick-Frozen Foods in China: Incidence, Genetic Characteristics, and Antibiotic Resistance. Foods 2023; 12:3019. [PMID: 37628018 PMCID: PMC10453260 DOI: 10.3390/foods12163019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cronobacter spp. are emerging foodborne pathogens that cause severe diseases. However, information on Cronobacter contamination in quick-frozen foods in China is limited. Therefore, we studied the prevalence, molecular characterization, and antimicrobial susceptibility of Cronobacter in 576 quick-frozen food samples collected from 39 cities in China. Cronobacter spp. were found in 18.75% (108/576) of the samples, and the contamination degree of the total positive samples was 5.82 MPN/g. The contamination level of frozen flour product samples was high (44.34%). Among 154 isolates, 109 were C. sakazakii, and the main serotype was C. sakazakii O1 (44/154). Additionally, 11 serotypes existed among four species. Eighty-five sequence types (STs), including 22 novel ones, were assigned, indicating a relatively high genetic diversity of the Cronobacter in this food type. Pathogenic ST148, ST7, and ST1 were the main STs in this study. ST4, epidemiologically related to neonatal meningitis, was also identified. All strains were sensitive to cefepime, tobramycin, ciprofloxacin, and imipenem, in which the resistance to cephalothin was the highest (64.94%).Two isolates exhibited multidrug resistance to five and seven antimicrobial agents, respectively. In conclusion, these findings suggest that the comparatively high contamination level of Cronobacter spp. in quick-frozen foods is a potential risk warranting public attention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Q.L.); (C.L.); (L.C.); (Z.C.); (S.W.); (Q.G.); (Y.Z.); (X.W.); (J.Z.); (X.Y.); (S.Z.); (Q.Y.)
| |
Collapse
|
5
|
Li Q, Li C, Ye Q, Gu Q, Wu S, Zhang Y, Wei X, Xue L, Chen M, Zeng H, Zhang J, Wu Q. Occurrence, molecular characterization and antibiotic resistance of Cronobacter spp. isolated from wet rice and flour products in Guangdong, China. Curr Res Food Sci 2023; 7:100554. [PMID: 37559946 PMCID: PMC10407891 DOI: 10.1016/j.crfs.2023.100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
This study explored the prevalence of Cronobacter spp. in wet rice and flour products from Guangdong province, China, the molecular characteristics and antimicrobial susceptibility profiles of the isolates were identified. Among 249 samples, 100 (40.16%) were positive for Cronobacter spp., including 77 wet rice and 23 wet flour products. Eleven serotypes were characterized among 136 isolates with C. sakazakii O2 (n = 32) predominating. Forty-nine MLST patterns were assigned, 15 of which were new. C. sakazakii ST4 (n = 17) was the dominant ST, which is previously reported to have caused three deaths; followed by C. malonaticus ST7 (n = 15), which is connected to adult infections. All strains presented susceptibility to ampicillin/sulbactam, imipenem, aztreonam and trimethoprim/sulfamethoxazole. The isolates showed maximum resistance to cephalothin, and the resistance and intermediate rates were 91.91% and 3.68%, each. Two strains, croM234A1 and croM283-1, displayed resistance to three antibiotics. High contamination level and predominant number of pathogenic STs of Cronobacter in wet rice and flour products implied a potential risk to public healthiness. This survey could provide comprehensive information for establishing more targeted control methods for Cronobacter spp.
Collapse
Affiliation(s)
| | | | - Qinghua Ye
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qihui Gu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Shi Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Youxiong Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Xianhu Wei
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Liang Xue
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Moutong Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Haiyan Zeng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| |
Collapse
|
6
|
Comparative meta-analysis of antimicrobial resistance from different food sources along with one health approach in Italy and Thailand. One Health 2022; 16:100477. [PMID: 36593979 PMCID: PMC9803827 DOI: 10.1016/j.onehlt.2022.100477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is increasing worldwide due to overuse, misuse and incomplete treatment of antibiotics. Many countries are facing the excessive issue due to the spreading of AMR not only in humans and animals, but also in water and agri-food sector. Our main aim was to perform a competitive meta-analysis of surveillance-resistant microbes and their antimicrobial superintendence in Italy and Thailand. Data have been collected from reports published for the period 2012-2021. A total of 9507 and 11,753 food samples contained 3905 (41.07%) and 3526 (30%) AMR bacteria in Italy and Thailand, respectively. In Italy, the highest microbial prevalence was β-lactam and tetracycline, while in Thailand mostly isolates showed resistance to cephalosporin and aminoglycoside. Our findings contribute to highlighting the increment of AMR related to different microbes with tendency to become multidrug resistant.
Collapse
|
7
|
Isolation and Identification of Cronobacter spp. from Fish and Shellfish Sold in Retail Markets. Curr Microbiol 2021; 78:1973-1980. [PMID: 33774683 DOI: 10.1007/s00284-021-02447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
In this study, we investigated the incidence of Cronobacter spp. in seafood collected from retail fish markets of Mumbai, India. A total of 50 samples comprising fresh finfish (n = 32), shellfish (n = 6), dried fish (n = 9) and water (n = 3) were analyzed for Cronobacter spp. by selective enrichment, isolation and biochemical tests. Of 145 isolates presumptively identified as Cronobacter spp. by biochemical tests, 37 were confirmed as Cronobacter spp. by Polymerase Chain Reaction (PCR) specific to the internal transcribed spacer (ITS) regions. Based on the partial ITS gene sequence analysis, 35 isolates were identified as Cronobacter malonaticus and two as Cronobacter sakazakii. The highest incidence of Cronobacter spp. was in dried fish (55.6%), followed by shellfish (33.3%). The virulence gene ompA was detected in two Cronobacter sakazakii isolates. This is the first report of the incidence of Cronobacter spp. in fresh and dried seafood from India, which highlights the need to focus on this emerging pathogen in tropical seafood.
Collapse
|
8
|
Prevalence, genetic analysis and CRISPR typing of Cronobacter spp. isolated from meat and meat products in China. Int J Food Microbiol 2020; 321:108549. [PMID: 32062304 DOI: 10.1016/j.ijfoodmicro.2020.108549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022]
Abstract
Cronobacter spp. are important foodborne pathogens that infections occur in all age groups, especially cause serious life-threatening diseases in infants. This study aimed to acquire data on Cronobacter spp. contamination of meat and meat products (n = 588) in China during 2011 to 2016, and investigated the use of CRISPR typing technology as an approach for characterizing the genetics of Cronobacter spp. The overall contamination rate for Cronobacter spp. was determined to be 9.18% (54/588). Of the positive samples, 90.74% (49/54) had <10 MPN/g, with duck samples had a relatively high contamination rate (15.69%, 8/51) and highest contamination level (28.90 MPN/g). Four species and nine serotypes were identified among 69 isolates, of which C. sakazakii was the major species (n = 50) and C. sakazakii serogroup O1 and O2 (n = 17) were the primary serotypes. The majority of Cronobacter spp. strains were found to be susceptible to most antibiotics except exhibited high resistance to cephalothin (76.81%, 53/69), and total two multi-drug resistant C. sakazakii strains were isolated from duck. The genetic diversity of Cronobacter spp. was remarkably high, as evidenced by the identification of 40 sequence types (STs) and 60 CRISPR types (CTs). C. sakazakii ST64 (n = 7) was the predominant genotype and was further divided into two sub-lineages based on CRISPR diversity, showing different antibiotic resistance profile. These results demonstrate that CRISPR typing results have a good correspondence with bacterial phenotypes, and it will be a tremendously useful approach for elucidating inter-subtyping during molecular epidemiological investigations while interpreting the divergent evolution of Cronobacter. The presence of Cronobacter spp. in meat and meat product is a potential threat to human public health.
Collapse
|
9
|
Examining the Presence of Cronobacter spp. in Ready-to-eat Edible Insects. Food Saf (Tokyo) 2019; 7:74-78. [PMID: 31998590 PMCID: PMC6977773 DOI: 10.14252/foodsafetyfscj.d-19-00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022] Open
Abstract
Edible insects present a potential solution to increasing global food insecurity.
However, there is limited research on the microbial hazards they may pose. These include
opportunistic pathogens like Cronobacter spp. (formerly
Enterobacter sakazakii). In this study, nine types of ready-to-eat
edible insect products purchased in the UK were examined for their microbial load (total
aerobic count, total Enterobacteriaceae count), and screened for the
presence of Cronobacter sakazakii(C. sakazakii) by
selective enrichment and plating on chromogenic agar. While microbial load was generally
low, presumptive Cronobacter spp. were detected in five of the edible
insect products. Four of the isolates were identified as C. sakazakii,
using the Remel RapID ONE biochemical test kit. Genotypic characterisation of the isolates
by ITS-PCR, however, demonstrated that the isolates may be other species of
Cronobacter instead. Further studies into understanding microbial
hazards linked to edible insects for human consumption are required.
Collapse
|
10
|
Fox EM, Jiang Y, Gobius KS. Key pathogenic bacteria associated with dairy foods: On-farm ecology and products associated with foodborne pathogen transmission. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Zeng H, Zhang J, Wu Q, He W, Wu H, Ye Y, Li C, Ling N, Chen M, Wang J, Cai S, Lei T, Ding Y, Xue L. Reconstituting the History of Cronobacter Evolution Driven by Differentiated CRISPR Activity. Appl Environ Microbiol 2018; 84:e00267-18. [PMID: 29523551 PMCID: PMC5930372 DOI: 10.1128/aem.00267-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/05/2018] [Indexed: 01/18/2023] Open
Abstract
Cronobacter strains harboring the CRISPR-Cas system are important foodborne pathogens causing serious neonatal infections. However, the specific role of the CRISPR-Cas system in bacterial evolution remains relatively unexplored. In this study, we investigated the impact of the CRISPR-Cas system on Cronobacter evolution and obtained 137 new whole-genome Cronobacter sequences by next-generation sequencing technology. Among the strains examined (n = 240), 90.6% (193/213) of prevalent species Cronobacter sakazakii, Cronobactermalonaticus, and Cronobacterdublinensis strains had intact CRISPR-Cas systems. Two rare species, Cronobactercondimenti (n = 2) and Cronobacteruniversalis (n = 6), lacked and preserved the CRISPR-Cas system at a low frequency (1/6), respectively. These results suggest that the presence of one CRISPR-Cas system is important for a Cronobacter species to maintain genome homeostasis for survival. The Cronobacter ancestral strain is likely to have harbored both subtype I-E and I-F CRISPR-Cas systems; during the long evolutionary process, subtype I-E was retained while subtype I-F selectively degenerated in Cronobacter species and was even lost by the major Cronobacter pathovars. Moreover, significantly higher CRISPR activity was observed in the plant-associated species Cdublinensis than in the virulence-related species C. sakazakii and Cmalonaticus Similar spacers of CRISPR arrays were rarely found among species, suggesting intensive change through adaptive acquisition and loss. Differentiated CRISPR activity appears to be the product of environmental selective pressure and might contribute to the bidirectional divergence and speciation of CronobacterIMPORTANCE This study reports the evolutionary history of Cronobacter under the selective pressure of the CRISPR-Cas system. One CRISPR-Cas system in Cronobacter is important for maintaining genome homeostasis, whereas two types of systems may be redundant and not conducive to acquiring beneficial DNA for environmental adaptation and pathogenicity. Differentiated CRISPR activity has contributed to the bidirectional divergence and genetic diversity of Cronobacter This perspective makes a significant contribution to the literature by providing new insights into CRISPR-Cas systems in general, while further expanding the roles of CRISPR beyond conferring adaptive immunity and demonstrating a link to adaptation and species divergence in a genus. Moreover, our study provides new insights into the balance between genome homeostasis and the uptake of beneficial DNA related to CRISPR-based activity in the evolution of Cronobacter.
Collapse
Affiliation(s)
- Haiyan Zeng
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Wenjing He
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Haoming Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Yingwang Ye
- School of Food Science and Technology, Hefei University of Technology, Hefei, China
| | - Chengsi Li
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Na Ling
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Moutong Chen
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shuzhen Cai
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Tao Lei
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Technology, Jinan University, Guangzhou, China
| | - Liang Xue
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| |
Collapse
|