1
|
Wei S, Wei L, Xie B, Li J, Lyu J, Wang S, Khan MA, Xiao X, Yu J. Characterization of volatile profile from different coriander (Coriandrum sativum L.) varieties via HS-SPME/GC-MS combined with E-nose analyzed by chemometrics. Food Chem 2024; 457:140128. [PMID: 38959682 DOI: 10.1016/j.foodchem.2024.140128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Headspace-solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) and electronic nose (E-nose) technologies were implemented to characterize the volatile profile of aerial part from 40 coriander varieties. A total of 207 volatile compounds were identified and quantified, including aldehydes, alcohols, terpenes, hydrocarbons, esters, ketones, acids, furans, phenols and others. E-nose results showed that W5S and W2W were representative sensors responding to coriander odor. Among all varieties, the number (21-30 species) and content (449.94-1050.55 μg/g) of aldehydes were the highest, and the most abundant analytes were (Z)-9-hexadecenal or (E)-2-tetratecenal, which accounted for approximately one-third of the total content. In addition, 37 components were determined the characteristic constituents with odor activity values (OAVs) ≥ 1, mainly presenting citrusy, fatty, soapy and floral smells. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) could effectively distinguish different varieties. This study provided a crucial theoretical basis for flavor evaluation and quality improvement of coriander germplasm resources.
Collapse
Affiliation(s)
- Shouhui Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, PR China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, PR China
| | - Bojie Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Ju Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Muhammad Azam Khan
- Department of Horticulture, PMAS-ARID Agriculture University, Rawalpindi, Pakistan
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
2
|
Wei S, Lv J, Wei L, Xie B, Wei J, Zhang G, Li J, Gao C, Xiao X, Yu J. Chemometric approaches for the optimization of headspace-solid phase microextraction to analyze volatile compounds in coriander (Coriandrum sativum L.). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Sam FE, Ma T, Liang Y, Qiang W, Atuna RA, Amagloh FK, Morata A, Han S. Comparison between Membrane and Thermal Dealcoholization Methods: Their Impact on the Chemical Parameters, Volatile Composition, and Sensory Characteristics of Wines. MEMBRANES 2021; 11:membranes11120957. [PMID: 34940458 PMCID: PMC8708490 DOI: 10.3390/membranes11120957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022]
Abstract
Over the last few years, the dealcoholization of wine has piqued the interest of winemakers and researchers. Physical dealcoholization methods are increasingly used in the dealcoholization of wines because they can partially or completely reduce the alcohol content of wines. This study aimed to compare the chemical parameters, volatile composition and sensory quality of white, rosé and red wines dealcoholized by two physical dealcoholization methods: reverse osmosis (RO) and vacuum distillation (VD) at 0.7% v/v ethanol. RO and VD effectively reduced the ethanol concentration in all wines to the required 0.7% v/v, but also significantly affected most chemical parameters. The pH, free sulfur dioxide, total sulfur dioxide, and volatile acidity decreased significantly due to dealcoholization by RO and VD, while reducing sugars and total acidity increased significantly. VD resulted in higher color intensity, which was perceptible in dealcoholized rosé and red wines, while RO caused notable color differences in dealcoholized white and red wine fractions. RO were richer in esters (more ethyl esters and isoamyl acetate), higher alcohols, organic acids, terpenics and C13-norisoprenoids, and carbonyl compounds, while wines dealcoholized with VD had lower levels of these volatile compounds, which may reflect both the loss of esters into the distillate during evaporation and condensation (in the case of VD) and a shift in the chemical equilibrium responsible for ester formation and hydrolysis after ethanol removal. β-damascenone exhibited the highest OAV in all wines, however, losses equal to 35.54–61.98% in RO dealcoholized fractions and 93.62% to 97.39% in VD dealcoholized fractions were observed compared to the control wines. The predominant aroma series in the original and dealcoholized wines were fruity and floral but were greatly affected by VD. Sensory evaluation and PCA showed that dealcoholization by RO improved the fruity and floral notes (in rosé and red wines), color intensity, sweetness, viscosity, and aroma intensity better than dealcoholization by VD, while VD mainly enhanced the color of the dealcoholized wines. Both methods increased the acidity of the respective dealcoholized wines. Nevertheless, RO dealcoholized wines achieved higher acceptance by the panelists than VD dealcoholized wines. Therefore, RO may be a better method for producing dealcoholized (0.7% v/v) wines with minimal impact on aroma and sensory quality.
Collapse
Affiliation(s)
- Faisal Eudes Sam
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (F.E.S.); (T.M.); (Y.L.); (W.Q.)
| | - Tengzhen Ma
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (F.E.S.); (T.M.); (Y.L.); (W.Q.)
| | - Yuhua Liang
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (F.E.S.); (T.M.); (Y.L.); (W.Q.)
| | - Wenle Qiang
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (F.E.S.); (T.M.); (Y.L.); (W.Q.)
| | - Richard Atinpoore Atuna
- Department of Food Science and Technology, University for Development Studies, Nyankpala Campus, P.O. Box TL1882, Tamale 34983, Ghana; (R.A.A.); (F.K.A.)
| | - Francis Kweku Amagloh
- Department of Food Science and Technology, University for Development Studies, Nyankpala Campus, P.O. Box TL1882, Tamale 34983, Ghana; (R.A.A.); (F.K.A.)
| | - Antonio Morata
- Food Technology Department, Technical College of Agricultural Engineers, Technical University of Madrid, Avenida Complutense S/N, 28040 Madrid, Spain;
| | - Shunyu Han
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (F.E.S.); (T.M.); (Y.L.); (W.Q.)
- Correspondence: ; Tel.: +86-138-9313-2658
| |
Collapse
|
4
|
Wang K, Ma B, Feng T, Chen D, Yao L, Lu J, Sun M. Quantitative analysis of volatile compounds of four Chinese traditional liquors by SPME-GC-MS and determination of total phenolic contents and antioxidant activities. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The aim of this work was to investigate the volatile compositions of four Chinese functional liquors. For this purpose, volatile compounds of four liquors were extracted with head-space solid-phase microextraction (HS-SPME) and analyzed with gas chromatography-mass spectrometry (GC-MS) along with the determination of odor activity value (OAV) and relative odor contribution (ROC). Sixty volatiles were tentatively identified and categorized into the following seven groups: alcohols, esters, fatty acids, carbonyl compound, hydrocarbons, phenols, and other components. The differences in chemical composition of volatile compounds were visualized with heat maps. Odorants were compared with different samples using a statistical analysis of Venn diagrams and a multivariate principal component analysis, and ethyl hexanoate, ethyl acetate, and ethyl octanoate were found to be the key odorants. Besides, abundant phenolic contents and high antioxidant ability of four Chinese functional liquors could potentially bring better health-boosting effects.
Collapse
Affiliation(s)
- Kai Wang
- Technology Centre of China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Bowen Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai , China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai , China
| | - Da Chen
- Department of Food Science and Technology, The Ohio State University , 2015 Fyffe Road , Columbus , OH43210 , United States of America
| | - Linyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai , China
| | - Jun Lu
- Department of Health and Environmental Sciences, Auckland University of Technology , Auckland , New Zealand
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai , China
| |
Collapse
|
5
|
Kuo CH, Chou YC, Liao KC, Shieh CJ, Deng TS. Optimization of Light Intensity, Temperature, and Nutrients to Enhance the Bioactive Content of Hyperforin and Rutin in St. John's Wort. Molecules 2020; 25:molecules25184256. [PMID: 32948004 PMCID: PMC7571029 DOI: 10.3390/molecules25184256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
St. John’s wort (Hypericum perforatum L.) is a medicinal plant that alleviates depression and other disorders due to its abundance of active ingredients. Hyperforin, rutin, and melatonin are the main active, and important, ingredients in St. John’s wort that alleviate depression. In order to investigate the optimal conditions for accumulating these active ingredients, design of experiments and response surface methodology (RSM) was employed in this study. Two-month-old St John’s wort plants were cultivated in growth chambers at varying temperatures, light intensities, and nutrient solution concentrations before analysis by HPLC, for determining differences in hyperforin, rutin, and melatonin content. The results showed that hyperforin and rutin contents were significantly influenced by temperature (18–23 °C) and light intensity (49–147 μmol m−2 s−1 photosynthetic photon flux density (PPFD)), whereas Hoagland’s nutrient solution concentration (25–75%) had little effect. The accumulation of melatonin might not be influenced by cultivation conditions. Light intensity and temperature are easily controlled environmental factors in artificial cultivation, both of which are related to secondary metabolite production in the plant. Based on RSM, the optimal conditions for the accumulation of hyperforin and rutin were obtained. The maximum content of hyperforin was 5.6 mg/g, obtained at a temperature of 19 °C, a nutrient solution concentration of 45%, and a light intensity of 49 μmol m−2 s−1 PPFD. The maximum content of rutin was 3.8 mg/g obtained at a temperature of 18 °C, a nutrient solution concentration of 50%, and a light intensity of 147 μmol m−2 s−1 PPFD. This evaluation of suitable conditions for the accumulation of bioactive compounds in St. John’s wort can be applied to plant factories on a large scale.
Collapse
Affiliation(s)
- Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Yi-Chin Chou
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (Y.-C.C.); (K.-C.L.)
| | - Kuo-Chun Liao
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (Y.-C.C.); (K.-C.L.)
| | - Chwen-Jen Shieh
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (C.-J.S.); (T.-S.D.); Tel.: +886-4-2284-0450 (ext. 5121) (C.-J.S.); +886-4-2284-0776 (ext. 601) (T.-S.D.)
| | - Tzu-Shing Deng
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (Y.-C.C.); (K.-C.L.)
- Correspondence: (C.-J.S.); (T.-S.D.); Tel.: +886-4-2284-0450 (ext. 5121) (C.-J.S.); +886-4-2284-0776 (ext. 601) (T.-S.D.)
| |
Collapse
|
6
|
Electrochemically deposition of ionic liquid modified graphene oxide for circulated headspace in-tube solid phase microextraction of naphthalene from honey samples followed by on-line liquid chromatography analysis. J Chromatogr A 2020; 1628:461486. [DOI: 10.1016/j.chroma.2020.461486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 01/07/2023]
|
7
|
The Effect of Non-Saccharomyces and Saccharomyces Non-Cerevisiae Yeasts on Ethanol and Glycerol Levels in Wine. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030077] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Non-Saccharomyces and Saccharomyces non-cerevisiae studies have increased in recent years due to an interest in uninoculated fermentations, consumer preferences, wine technology, and the effect of climate change on the chemical composition of grapes, juice, and wine. The use of these yeasts to reduce alcohol levels in wines has garnered the attention of researchers and winemakers alike. This review critically analyses recent studies concerning the impact of non-Saccharomyces and Saccharomyces non-cerevisiae on two important parameters in wine: ethanol and glycerol. The influence they have in sequential, co-fermentations, and solo fermentations on ethanol and glycerol content is examined. This review highlights the need for further studies concerning inoculum rates, aeration techniques (amount and flow rate), and the length of time before Saccharomyces cerevisiae sequential inoculation occurs. Challenges include the application of such sequential inoculations in commercial wineries during harvest time.
Collapse
|
8
|
Revealing the Usefulness of Aroma Networks to Explain Wine Aroma Properties: A Case Study of Portuguese Wines. Molecules 2020; 25:molecules25020272. [PMID: 31936556 PMCID: PMC7024348 DOI: 10.3390/molecules25020272] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 01/15/2023] Open
Abstract
Wine aroma is the result of complex interactions between volatile compounds and non-volatile ones and individual perception phenomenon. In this work, an aroma network approach, that links volatile composition (chromatographic data) with its corresponding aroma descriptors was used to explain the wine aroma properties. This concept was applied to six monovarietal wines from Bairrada Appellation (Portugal) and used as a case study. A comprehensive determination of the wines’ volatile composition was done (71 variables, i.e., volatile components), establishing a workflow that combines extraction techniques and gas chromatographic analysis. Then, a bipartite network-based approach consisting of two different nodes was built, one with 19 aroma descriptors, and the other with the corresponding volatile compound(s). To construct the aroma networks, the odor active values were calculated for each determined compound and combined with the bipartite network. Finally, the aroma network of each wine was compared with sensory descriptive analysis. The analysis of the specific aroma network of each wine revealed that Sauvignon Blanc and Arinto white wines present higher fruity (esters) and sweet notes (esters and C13 norisoprenoids) than Bical wine. Sauvignon Blanc also exhibits higher toasted aromas (thiols) while Arinto and Bical wines exhibit higher flowery (C13 norisoprenoids) and herbaceous notes (thiols), respectively. For red wines, sweet fruit aromas are the most abundant, especially for Touriga Nacional. Castelão and Touriga Nacional wines also present toasted aromas (thiols). Baga and Castelão wines also exhibit fusel/alcohol notes (alcohols). The proposed approach establishes a chemical aroma fingerprint (aroma ID) for each type of wine, which may be further used to estimate wine aroma characteristics by projection of the volatile composition on the aroma network.
Collapse
|
9
|
Pham DT, Stockdale VJ, Wollan D, Jeffery DW, Wilkinson KL. Compositional Consequences of Partial Dealcoholization of Red Wine by Reverse Osmosis-Evaporative Perstraction. Molecules 2019; 24:molecules24071404. [PMID: 30974766 PMCID: PMC6480466 DOI: 10.3390/molecules24071404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 11/23/2022] Open
Abstract
This study investigated compositional changes in red wines resulting from wine alcohol removal by reverse osmosis-vaporative perstraction (RO-EP) and provides insight into the physical and chemical changes in reduced alcohol wine (RAW). Trial 1 involved RO-EP treatment of three wines that were analyzed pre-treatment, post-treatment, and post-treatment with alcohol adjustment (i.e., addition of ethanol to achieve the original alcohol content). Trial 2 involved partial dealcoholization of two wines and analysis of samples collected during RO-EP treatment, i.e., wine in, wine out, retentate, permeate (pre- and post-EP treatment) and strip water. Wine color was analyzed by spectrophotometric methods, while other compositional changes were determined by WineScan, high performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry (GC–MS) analyses. In general, RAWs were slightly more concentrated than pre-treatment wines, which resulted in greater color intensity and increased phenolics and organic acids. However, partial dealcoholization resulted in lower concentrations of some fermentation volatiles, particularly ethyl esters, which may reflect ester hydrolysis following ethanol removal.
Collapse
Affiliation(s)
- Duc-Truc Pham
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia.
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia.
| | - Vanessa J Stockdale
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia.
- Treasury Wine Estates, 97 Sturt Highway, Nuriootpa, SA 5352, Australia.
| | - David Wollan
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia.
- VA Filtration, PO Box 794, Nuriootpa, SA 5355, Australia.
| | - David W Jeffery
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia.
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia.
| | - Kerry L Wilkinson
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia.
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia.
| |
Collapse
|