1
|
Kassym L, Kussainova A, Semenova Y, McLoone P. Antimicrobial Effect of Honey Phenolic Compounds against E. coli-An In Vitro Study. Pharmaceuticals (Basel) 2024; 17:560. [PMID: 38794130 PMCID: PMC11123796 DOI: 10.3390/ph17050560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Growing concern over antimicrobial resistance in chronic wound patients necessitates the exploration of alternative treatments from natural sources. This study suggests that honey's phenolic compounds may offer antimicrobial benefits, warranting further investigation for therapeutic development. The main aim of this study was to investigate the antimicrobial activity of phenolic compounds and to determine the effects of their sub-inhibitory concentrations against Escherichia coli (E. coli). 3-phenyllactic acid (PLA), p-coumaric acid (PCA), and phloretin were tested against the bacterial strain of E. coli ATCC 25922. Comparison of the antimicrobial activity of honey constituents in vitro was performed using a broth culture assay. Measurement of the inhibitory properties of constituents in vitro was conducted using disc and well diffusion assays. The effects of sub-inhibitory concentrations of PCA on the susceptibility of E. coli ATCC 25922 to penicillin-streptomycin were tested. The results demonstrated that PLA was the most efficient antimicrobial agent, followed by PCA, whereas phloretin, at lower (2 mg/mL) concentrations, led to an increase in the growth of E. coli. Various modifications of the agar diffusion assay did not reveal the antibacterial properties of the studied phytochemicals. The enhancing effect of a sub-inhibitory concentration of PCA in cooperation with penicillin-streptomycin was shown. These findings might be helpful for the further investigation and development of new antimicrobial agents for the treatment of skin infections and wounds.
Collapse
Affiliation(s)
- Laura Kassym
- Department of General Medical Practice with a Course of Evidence-Based Medicine, NJSC “Astana Medical University”, Astana 010000, Kazakhstan;
| | - Assiya Kussainova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Pauline McLoone
- School of Medicine, University of Kurdistan Hewler, Erbil 44001, Iraq;
| |
Collapse
|
2
|
Cucu AA, Pașca C, Cucu AB, Moise AR, Bobiş O, Dezsi Ș, Blaga Petrean A, Dezmirean DS. Evaluation of the Main Macro-, Micro- and Trace Elements Found in Fallopia japonica Plants and Their Traceability in Its Honey: A Case Study from the Northwestern and Western Part of Romania. PLANTS (BASEL, SWITZERLAND) 2024; 13:428. [PMID: 38337961 PMCID: PMC10857060 DOI: 10.3390/plants13030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Fallopia japonica (Japanese knotweed, Reynoutria japonica or Polygonum cuspidatum) is considered an extremely invasive plant worldwide and a bioindicator of heavy metals. Yet, its potential as a crop for honeybees is still underevaluated. This study employs atomic absorption spectrometry to quantitatively analyze the concentration of macro-elements, namely, calcium (Ca), potassium (K) and magnesium (Mg); micro-elements, such as copper (Cu), iron (Fe), manganese (Mn) and selenium (Se); and trace elements, i.e., cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb) in different anatomic parts of Fallopia japonica (FJ) plants (roots, rhizomes, stems, leaves) and their traceability into honey. This research encompasses a thorough examination of samples collected from the northwestern and western part of Romania, providing insights into their elemental composition. The results showed that the level of trace elements decreases in terms of traceability in honey samples (Pb was not detected in any of the analyzed samples, while Cd had a minimum content 0.001 mg/kg), ensuring its quality and health safety for consumption. Moreover, the data generated can function as a valuable resource to explore the plant's positive eco-friendly impacts, particularly in relation to its honey.
Collapse
Affiliation(s)
- Alexandra-Antonia Cucu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur St., 400372 Cluj-Napoca, Romania; (A.-A.C.); (A.R.M.)
| | - Claudia Pașca
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur St., 400372 Cluj-Napoca, Romania; (A.-A.C.); (A.R.M.)
| | - Alexandru-Bogdan Cucu
- National Institute for Research and Development in Forestry (INCDS) “Marin Drăcea”, 400202 Braşov, Romania;
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur St., 400372 Cluj-Napoca, Romania; (A.-A.C.); (A.R.M.)
| | - Otilia Bobiş
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur St., 400372 Cluj-Napoca, Romania; (A.-A.C.); (A.R.M.)
| | - Ștefan Dezsi
- Faculty of Geography, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Anamaria Blaga Petrean
- Department of Animal Production and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur St., 400372 Cluj-Napoca, Romania;
| | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur St., 400372 Cluj-Napoca, Romania; (A.-A.C.); (A.R.M.)
| |
Collapse
|
3
|
Community Dynamics in Structure and Function of Honey Bee Gut Bacteria in Response to Winter Dietary Shift. mBio 2022; 13:e0113122. [PMID: 36036626 PMCID: PMC9600256 DOI: 10.1128/mbio.01131-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperate honey bees (Apis mellifera) are challenged by low temperatures and abrupt dietary shifts associated with behavioral changes during winter. Case studies have revealed drastic turnover in the gut microbiota of winter bees, highlighted by the seasonal dominance of a non-core bacterium Bartonella. However, neither biological consequence nor underlying mechanism of this microbial turnover is clear. In particular, we ask whether such changes in gut profile are related to winter dietary shift and possibly beneficial to host and associated gut microbiome? Here, we integrated evidences from genomics, metagenomics, and metabolomics in three honey bee subspecies maintained at the same locality of northern China to profile both diversity and functional variations in gut bacteria across seasons. Our results showed that winter dominance of Bartonella was shared in all tested honey bee lineages. This seasonal change was likely a consequence of winter dietary shifts characterized by greatly reduced pollen consumption and accumulation of metabolic waste due to restricted excretion. Bartonella showed expanded genomic capacity in utilizing more diverse energy substrates, such as converting metabolic wastes lactate and ethanol into pyruvate, an energy source for self-utilization and possibly also for host and other symbionts. Furthermore, Bartonella was the only bacterium capable of both producing and secreting tryptophan and phenylalanine, whose metabolic products were detected in bee guts, even though all gut bacteria lacked relevant digestion enzymes. These results thus suggested a possible mechanism where the gut bacteria might benefit the host by supplementing them with essential amino acids lacking in a protein shortage diet.
Collapse
|
4
|
Zheng X, Zhao Y, Naumovski N, Zhao W, Yang G, Xue X, Wu L, Granato D, Peng W, Wang K. Systems Biology Approaches for Understanding Metabolic Differences Using 'Multi-Omics' Profiling of Metabolites in Mice Fed with Honey and Mixed Sugars. Nutrients 2022; 14:nu14163445. [PMID: 36014951 PMCID: PMC9412287 DOI: 10.3390/nu14163445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/17/2022] Open
Abstract
Honey is proposed to be the oldest natural sweetener and it is a standard component of several dietary patterns. Recent evidence suggests that replacing sugars, such as fructose, with honey has potential health benefits. In this study, we determined the effects of honey supplementation in mice on cardiometabolic and inflammatory markers and changes in gut microbiota and metabolomic profiles. We compared mice fed a honey diet (1 or 2 g/kg) with those fed an analog diet (mixed fructose, glucose, and sucrose (FSG) solutions) at exact dosages for one month. We found the same blood glucose fluctuating trends for honey- and FGS-fed mice. The honey diets resulted in less weight gain and fewer ballooned hepatocytes. Additionally, honey diets decreased the total serum cholesterol and TNF-α and increased the antioxidant enzyme activity. Each diet type was associated with distinct gut microbiota and metabolomics profiles. Systems biology analysis revealed that Lactococcus spp., Lachnospiraceae spp., and oleamide had the strongest correlations with lipid metabolic networks. Although in an animal model, this study provides a good understanding of the potential benefits of choosing honey rather than mixed sugars in regular dietary patterns.
Collapse
Affiliation(s)
- Xing Zheng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yazhou Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Nenad Naumovski
- University of Canberra Health Research Institute (UCHRI), University of Canberra, Locked Bag 1, Bruce, Canberra, ACT 2601, Australia
| | - Wen Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Daniel Granato
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
- Correspondence: (D.G.); (W.P.); (K.W.)
| | - Wenjun Peng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: (D.G.); (W.P.); (K.W.)
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: (D.G.); (W.P.); (K.W.)
| |
Collapse
|
5
|
Calluna vulgaris as a Valuable Source of Bioactive Compounds: Exploring Its Phytochemical Profile, Biological Activities and Apitherapeutic Potential. PLANTS 2022; 11:plants11151993. [PMID: 35956470 PMCID: PMC9370339 DOI: 10.3390/plants11151993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 01/23/2023]
Abstract
Calluna vulgaris, belonging to the Ericaceae family, is an invasive plant that has widely spread from Europe all across Asia, North America, Australia and New Zealand. Being able to survive in rigid soil and environmental conditions, it is nowadays considered to be of high nature-conservation value. Known for its nutritional and medicinal properties, C. vulgaris stands out for its varied physiochemical composition, spotlighting a wide range of biological activity. Among the most important bioactive compounds identified in C. vulgaris, the phenolic components found in different parts of this herbaceous plant are the main source of its diverse pro-health properties (antioxidant, anti-inflammatory, antimicrobial, chemoprotective, etc.). Nonetheless, this plant exhibits an excellent nectariferous potential for social insects such as honeybees; therefore, comparing the bioactive compounds observed in the plant and in the final product of the beehive, namely honey, will help us understand and find new insights into the health benefits provided by the consumption of C. vulgaris-related products. Thus, the main interest of this work is to review the nutritional profile, chemical composition and biological activities of the C. vulgaris plant and its related honey in order to encourage the future exploration and use of this health-promoting plant in novel foods, pharmacological products and apitherapy.
Collapse
|
6
|
The Trend in Established Analytical Techniques in the Investigation of Physicochemical Properties and Various Constituents of Honey: a Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Nikhat S, Fazil M. History, phytochemistry, experimental pharmacology and clinical uses of honey: A comprehensive review with special reference to Unani medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114614. [PMID: 34508800 DOI: 10.1016/j.jep.2021.114614] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Honey is one of the most popular functional foods, speculated to be in use since the advent of human civilization. Its health-protective activity is endorsed by many religions and traditional medicines. In Unani medicine, honey is prescribed for many health conditions as wound-healing, anti-inflammatory, anti-diabetic, etc. In the present era, honey is gaining popularity over sugar for its myriad health benefits and low glycemic index. This review attempts to provide a comprehensive account of the biological activities and potential therapeutic uses of honey, with scientific evidence. METHODOLOGY In this paper, we have provided a comprehensive overview of historical uses, types, physical characteristics, bioactive constituents and pharmacological activities of honey. The information was gathered from Classical Unani textbooks and leading scientific databases. There is a plethora of information regarding various therapeutic activities of honey, and it is daunting to draw practical conclusions. Hence, in this paper, we have tried to summarize those aspects which are most relevant to clinical application. OBSERVATIONS AND CONCLUSIONS Many important bioactive constituents are identified in different honey types, e.g. phenolics, proteins, vitamins, carbohydrates, organic acids, etc., which exert important biological activities like anti-microbial, wound healing, immunomodulatory, anti-toxin, antioxidant, and many others. Honey has the potential to alleviate many lifestyle disorders, mitigate the adverse effects of drugs and toxins, and also provide healthy nutrition. Although conclusive clinical evidence is not available, yet honey may potentially be a safer alternative to sucrose for diabetic patients.
Collapse
Affiliation(s)
- Sadia Nikhat
- Dept. of Ilaj bit Tadbeer, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Mohammad Fazil
- HAK Institute for Literary and Historical Research in Unani Medicine, CCRUM, Jamia Millia Islamia Campus, New Delhi, India.
| |
Collapse
|
8
|
Hasnul Hadi MH, Ker PJ, Thiviyanathan VA, Tang SGH, Leong YS, Lee HJ, Hannan MA, Jamaludin MZ, Mahdi MA. The Amber-Colored Liquid: A Review on the Color Standards, Methods of Detection, Issues and Recommendations. SENSORS 2021; 21:s21206866. [PMID: 34696079 PMCID: PMC8540017 DOI: 10.3390/s21206866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
For most natural or naturally-derived liquid products, their color reflects on their quality and occasionally affects customer preferences. To date, there are a few subjective and objective methods for color measurement which are currently utilized by various industries. Researchers are also improving these methods and inventing new methods, as color is proven to have the ability to provide various information on the condition and quality of the liquid. However, a review on the methods, especially for amber-colored liquid, has not been conducted yet. This paper presents a comprehensive review on the subjective and objective methods for color measurement of amber-colored liquids. The pros and cons of the measurement methods, the effects of the color on customer preferences, and the international industry standards on color measurements are reviewed and discussed. In addition, this study elaborates on the issues and challenges related to the color measurement techniques as well as recommendations for future research. This review demonstrates that the existing color measurement technique can determine the color according to the standards and color scales. However, the efforts toward minimizing the complexity of the hardware while maximizing the signal processing through advanced computation are still lacking. Therefore, through this critical review, this review can hopefully intensify the efforts toward finding an optimized method or technique for color measurement of liquids and thus expedite the development of a portable device that can measure color accurately.
Collapse
Affiliation(s)
- Muhamad Haziq Hasnul Hadi
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (V.A.T.); (M.A.H.)
| | - Pin Jern Ker
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (V.A.T.); (M.A.H.)
- Correspondence:
| | - Vimal A. Thiviyanathan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (V.A.T.); (M.A.H.)
| | - Shirley Gee Hoon Tang
- Department of Microbiology, Faculty of Medicine, Manipal University College Malaysia, Bukit Baru, Melaka 75150, Malaysia;
- International Medical School, Management and Science University, Shah Alam 40100, Malaysia
| | - Yang Sing Leong
- Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environmental, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia;
| | - Hui Jing Lee
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (H.J.L.); (M.Z.J.)
| | - Mahammad A. Hannan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (V.A.T.); (M.A.H.)
| | - Md. Zaini Jamaludin
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (H.J.L.); (M.Z.J.)
| | - Mohd Adzir Mahdi
- Wireless and Photonics Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| |
Collapse
|
9
|
Japanese Honeybees ( Apis cerana japonica Radoszkowski, 1877) May Be Resilient to Land Use Change. INSECTS 2021; 12:insects12080685. [PMID: 34442251 PMCID: PMC8396638 DOI: 10.3390/insects12080685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Pollinators are threatened globally by growing urban sprawl and agriculture. The Western Honeybee (Apis mellifera) readily adapts to whatever food is available, so people have made it the most widely distributed pollinator across the world. Previous research has suggested that the Western Honeybee may be less resilient to land use change outside of its natural range. This study examines a different honeybee species—the Japanese Honeybee (Apis cerana japonica). Unlike the Western Honeybee, this species is found almost exclusively in its natural range in Japan. Consequently, it may be better adapted to its local food sources and therefore more resilient. Working in southern Japan, in the Nagasaki and Saga prefectures, we looked at the nectar and pollen that the Japanese Honeybee feeds on. Their food intake was then examined in relation to local land use composition. We found minimal impact of increasing urban sprawl on the forage of the Japanese Honeybee. This goes against previous studies on the Western Honeybee elsewhere in the world. Though in need of a direct comparison with Western Honeybee, these preliminary results could be due to differences in urban green infrastructure in Japan, or due to an adaptation by the Japanese honeybee to its surroundings. Abstract Pollinators are being threatened globally by urbanisation and agricultural intensification, driven by a growing human population. Understanding these impacts on landscapes and pollinators is critical to ensuring a robust pollination system. Remote sensing data on land use attributes have previously linked honeybee nutrition to land use in the Western Honeybee (Apis mellifera L.). Here, we instead focus on the less commonly studied Apis cerana japonica—the Japanese Honeybee. Our study presents preliminary data comparing forage (honey and pollen) with land use across a rural-urban gradient from 22 sites in Kyushu, southern Japan. Honey samples were collected from hives between June 2018 and August 2019. Pollen were collected and biotyped from hives in urban and rural locations (n = 4). Previous studies of honey show substantial variation in monosaccharide content. Our analysis of A. cerana japonica honey found very little variation in glucose and fructose (which accounted for 97% of monosaccharides), despite substantial differences in surrounding forage composition. As expected, we observed temporal variation in pollen foraged by A. cerana japonica, likely dependent on flowering phenology. These preliminary results suggest that the forage and nutrition of A. cerana japonica may not be negatively affected by urban land use. This highlights the need for further comparative studies between A. cerana japonica and A. mellifera as it could suggest a resilience in pollinators foraging in their native range.
Collapse
|
10
|
Abstract
In the present work, laser-induced breakdown spectroscopy, aided by some machine learning algorithms (i.e., linear discriminant analysis (LDA) and extremely randomized trees (ERT)), is used for the detection of honey adulteration with glucose syrup. In addition, it is shown that instead of the entire LIBS spectrum, the spectral lines of inorganic ingredients of honey (i.e., calcium, sodium, and potassium) can be also used for the detection of adulteration providing efficient discrimination. The constructed predictive models attained high classification accuracies exceeding 90% correct classification.
Collapse
|
11
|
Šedík P, Predanócyová K, Horská E, Kačániová M. The antimicrobial activity of polyfloral honey and its awareness among urban consumers in Slovakia. POTRAVINARSTVO 2021. [DOI: 10.5219/1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The current interdisciplinary research studies the antimicrobial activity of selected polyfloral kinds of honey (n = 30) against three microorganisms (gram-positive bacteria Enterococcus faecalis, gram-negative bacteria Salmonella enterica, and one yeast Candida krusei) as well as investigates consumer behavior and awareness towards honey healing properties. Consumer research involved 617 honey consumers living in urban areas. T-test for Equality of means, non-parametric tests, and descriptive statistics were applied. Results showed that antimicrobial activity was found in all honey samples with a concentration of 50%. Nevertheless, better activity was obtained in honey samples from urban beekeepers compared to samples from retail stores. Results of consumer research showed that honey is mostly used as food (sweetener in beverages, ingredient in the recipe, or direct consumption) and as medicine mainly during the winter period. The consumer awareness towards honey healing effects was very high (97%), however, 1/3 of respondents were not able to list any specific examples, and only 11 % mentioned antibacterial activity. Furthermore, more than 70% of respondents did not know to explain the term “medical honey” and more than 50% of respondents are not aware of the maximum temperature used for heating honey without decreasing its biologically active compounds.
Collapse
|
12
|
Wu F, Zhao H, Sun J, Guo J, Wu L, Xue X, Cao W. ICP-MS-based ionomics method for discriminating the geographical origin of honey of Apis cerana Fabricius. Food Chem 2021; 354:129568. [PMID: 33799063 DOI: 10.1016/j.foodchem.2021.129568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/19/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022]
Abstract
The identification of geographical origin is an important factor in evaluating the authenticity of honey. However, at present, there are few studies concerning the honey of Apis cerana Fabricius (A. cerana, Asiatic honeybee). To identify geographical origin, we used two common methods (multi-physicochemical parameters and phenolic chromatographic fingerprints) but achieved only poor identification. To compensate for this shortcoming, we established an ICP-MS-based ionomics method using 18 elements in 27 A. cerana honey samples from three different areas in Shaanxi Province, China. Multivariate analysis showed that significant differences in contents can be used to discriminate the geographical origin of A. cerana honey. The method was further validated using an independent test set of 11 samples with 90.91% accuracy, demonstrating its potential for the identification and prediction of the geographical origin of honey.
Collapse
Affiliation(s)
- Fanhua Wu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jing Sun
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jianbo Guo
- Shaanxi Institute for Food and Drug Control, Keji Rd 5, Xi'an 710065, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|