1
|
Say D. Physicochemical, colour, microbiology, sensory and mineral attributes of set-type yoghurt produced from Gundelia tournefortii L. and its gum. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2166-2176. [PMID: 39397832 PMCID: PMC11464860 DOI: 10.1007/s13197-024-05987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 10/15/2024]
Abstract
The present study aimed to investigate the production of yoghurt in which the parts of the Gundelia tournefortii L. and its gum were added to milk at levels of 3% (v/v), incubated until the pH value reached 4.7 at 42 °C and then stored at 4 °C for 21 days. The Ca, P, K, Na and Mg contents of the yoghurt sample containing Gundelia tournefortii L. proved to be higher than those found in the control sample. Acidity, acetaldehyde, viscosity, a* values of yoghurt samples increased during storage, while the volatile fatty acids, gel firmness, whey separation, water holding capacity, L* and the b* values were decreased. The lactic acid bacteria count on the 21st day was > 6 log CFU/g in all yoghurt samples. The total aerobic mesophilic bacteria decreased except for the yoghurt sample containing Gundelia tournefortii L. milk, while the yeast and mold increased. The preference map revealed that 60-80% of consumers were satisfied with the control sample and the Gundelia tournefortii L. gum sample. Gundelia tournefortii L. milk and Gundelia tournefortii L. leaves samples were also found to have acceptable scores. As a result, adding Gundelia tournefortii L. into the yoghurt turned out to have a positive impact on its sensory and functional properties and could lead to an innovative approach in the dairy product market. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05987-1.
Collapse
Affiliation(s)
- Dilek Say
- Vocational School of Pozantı, Cukurova University, 01470 Pozantı, Adana, Turkey
- Biotechnology Center, Çukurova University, Adana, Turkey
| |
Collapse
|
2
|
Hamed AM, Abd El-Maksoud AA, Hassan MA, Tsakali E, Van Impe JFM, Ahmed HA, Nassrallah AA. Enhancing functional buffalo yogurt: Improving physicochemical properties, biological activities, and shelf life using marjoram and geranium essential oils. J Dairy Sci 2024; 107:6437-6450. [PMID: 38754824 DOI: 10.3168/jds.2023-24281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
The use of essential oils (EO) has attracted interest in the food industry because of their wide range of beneficial properties. In this study, a new functional yogurt was developed using 2 EO, marjoram and geranium, at 3 different concentrations (0.2%, 0.4%, and 0.6% vol/vol). The physicochemical properties, including syneresis, viscosity, pH, and chemical composition; bioactivities, including antioxidant activity, anticancer and antibacterial effects, total phenolic content (TPC), and total flavonoid content (TFC); and sensory characteristics of the developed yogurt were evaluated. The findings indicated that the yogurts fortified with 0.6% marjoram or geranium exhibited higher viscosity and lower syneresis compared with other treatments. The yogurt supplemented with 0.6% marjoram displayed significant antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, Salmonella typhimurium, and Escherichia coli. In addition, the yogurt enriched with geranium and marjoram oils at a concentration of 0.6% had notably significant (P < 0.05) higher TFC levels compared with the control sample and other concentrations. In the same context, in terms of TPC, yogurt supplemented with 0.6% marjoram displayed significantly (P < 0.05) elevated levels in comparison to the other samples tested. Yogurt enriched with marjoram oil exhibited noteworthy antioxidant activity, followed by geranium oil, compared with the control samples. The yogurt supplemented with 0.6% marjoram demonstrated strong radical scavenging activity, and the yogurt fortified with 0.6% geranium showed higher anticancer activity against HepG2 human liver carcinoma cells and oxidative stress enzyme activities. Among the various concentrations of EO tested, the yogurts fortified with 0.6% marjoram or geranium EO exhibited the most favorable outcomes, followed by 0.4% marjoram or geranium. To summarize, geranium and marjoram EO can be used as a potential nutritious ingredient and as a natural preservative for milk and related products.
Collapse
Affiliation(s)
- Ahmed M Hamed
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | | | - Moustafa A Hassan
- Food Science Department, Faculty of Agriculture, Ain Shams University, Cairo 11517, Egypt
| | - Efstathia Tsakali
- Department of Food Science and Technology, University of West Attica, Egaleo 122 43, Greece; Department of Chemical Engineering, BioTeC+ Chemical & Biochemical Process, KU Leuven, 9000 Ghent, Belgium
| | - Jan F M Van Impe
- Department of Chemical Engineering, BioTeC+ Chemical & Biochemical Process, KU Leuven, 9000 Ghent, Belgium
| | - Habiba A Ahmed
- Plant Biochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt; Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria 21934, Egypt
| | - Amr A Nassrallah
- Basic Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria 21934, Egypt.; Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
3
|
Zaki AH, Saleh Gazwi HS, Hamed MM, Galal SM, Almehmadi AM, Almuraee AA, Alqurashi AF, Yassien EE. The synergistic potential of orange peel extract: A comprehensive investigation into its phenolic composition, antioxidant, antimicrobial, and functional fortification properties in yogurt. Food Chem X 2024; 22:101458. [PMID: 38803668 PMCID: PMC11129169 DOI: 10.1016/j.fochx.2024.101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
The study explores the potential of orange peel extract (OPE) as a versatile natural resource, focusing on its phenolic composition, antioxidant, and antibacterial properties, as well as its application in fortifying yogurt. Analysis revealed significant concentrations of phenolic compounds in OPE. OPE exhibited notable antibacterial efficacy against pathogenic bacteria, particularly marine Escherichia coli, with synergistic effects observed when combined with Amikacin. Incorporating OPE into yogurt led to changes in chemical composition, enhancing total proteins, fat, and ash content. Fortified yogurt showed increased antioxidant activity and potential anti-cancer properties against HCT116 cell lines. In conclusion, OPE emerges as a rich source of bioactive compounds with diverse applications, from its antioxidant and antibacterial properties to its potential in fortifying functional foods like yogurt. This comprehensive exploration provides valuable insights into the multifaceted benefits of OPE, paving the way for its utilization in various industries and health-related applications.
Collapse
Affiliation(s)
- Asmaa Hussein Zaki
- Department of Agricultural Chemistry, Agriculture Faculty, Minia University, El-Minia, Egypt
| | - Hanaa Salem Saleh Gazwi
- Department of Agricultural Chemistry, Agriculture Faculty, Minia University, El-Minia, Egypt
| | | | - Salma Mohamed Galal
- Department of Dairy Science, Agriculture Faculty, Minia University, El-Minia, Egypt
| | - Awatif Musallam Almehmadi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm AL-Qura University, P.O. BOX, 715, Makkah 21955, Saudi Arabia
| | - Areej Abdulhamid Almuraee
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm AL-Qura University, P.O. BOX, 715, Makkah 21955, Saudi Arabia
| | - Amal Fahad Alqurashi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm AL-Qura University, P.O. BOX, 715, Makkah 21955, Saudi Arabia
| | - Eman Elhossainy Yassien
- Department of Agricultural Chemistry, Agriculture Faculty, Minia University, El-Minia, Egypt
| |
Collapse
|
4
|
Faisal Z, Irfan R, Akram N, Manzoor HMI, Aabdi MA, Anwar MJ, Khawar S, Saif A, Shah YA, Afzaal M, Desta DT. The multifaceted potential of fenugreek seeds: From health benefits to food and nanotechnology applications. Food Sci Nutr 2024; 12:2294-2310. [DOI: https:/doi.org/10.1002/fsn3.3959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/02/2024] [Indexed: 05/18/2024] Open
Abstract
AbstractThe present lifestyle, dietary patterns, psychological pressure, environmental factors, and the widespread exploitation of processed substances in food production and farming have collectively contributed to a substantial expediting in the development of various health problems. Globally, researchers have been seeking natural pharmaceutical substances with the potential to be employed in treating lifestyle‐related diseases or delaying their onset. Fenugreek seeds have gained significant attention in various fields, including health, nutrition, and cutting‐edge nanotechnology applications, due to their versatile qualities. The current investigation offers a comprehensive discussion of the nutritional composition and therapeutic potential of fenugreek seeds, with an emphasis on their plentiful reservoir of bioactive compounds. This seed demonstrates promising medicinal potential in addressing a wide range of health issues. Significantly, these findings indicate noteworthy properties, such as antidiabetic, antioxidant, anti‐obesity, hypocholesterolemic, anticancer, and cardioprotective effects. Moreover, the components of fenugreek seeds are important in the development of a multitude of foods, which is the reason why they are used extensively in the area of food research. In addition to their nutritional value, their exploration of nanotechnology reveals a promising domain, utilizing the distinctive characteristics of seeds for many purposes, such as nanoparticle synthesis and oil for edible films and nanoemulsions. This review article focuses on a comprehensive analysis of fenugreek seeds, examining their wide‐ranging applications in the fields of health, nutrition, food, and nanotechnology.
Collapse
Affiliation(s)
- Zargham Faisal
- Department of Human Nutrition, Faculty of Food Science and Nutrition Bahauddin Zakariya University Multan Pakistan
| | - Rushba Irfan
- Faculty of Food Nutrition and Home Sciences University of Agriculture Faisalabad Pakistan
| | - Noor Akram
- Department of Food and Nutrition Government College University Faisalabad Pakistan
| | | | - Mohib Ali Aabdi
- Department of Food Science and Technology, Faculty of Food Science and Nutrition Bahauddin Zakariya University Multan Pakistan
| | - Muhammad Junaid Anwar
- Department of Food Science and Technology, Faculty of Food Science and Nutrition Bahauddin Zakariya University Multan Pakistan
| | - Sharjeel Khawar
- Department of Human Nutrition, Faculty of Food Science and Nutrition Bahauddin Zakariya University Multan Pakistan
| | - Asifa Saif
- Department of Human Nutrition, Faculty of Food Science and Nutrition Bahauddin Zakariya University Multan Pakistan
| | - Yasir Abbas Shah
- Natural and Medical Science Research Centre University of Nizwa Nizwa Oman
| | - Muhammad Afzaal
- Department of Food Science Government College University Faisalabad Pakistan
| | - Derese Tamiru Desta
- School of Nutrition, Food Science and Technology Hawassa University Hawassa Ethiopia
| |
Collapse
|
5
|
Faisal Z, Irfan R, Akram N, Manzoor HMI, Aabdi MA, Anwar MJ, Khawar S, Saif A, Shah YA, Afzaal M, Desta DT. The multifaceted potential of fenugreek seeds: From health benefits to food and nanotechnology applications. Food Sci Nutr 2024; 12:2294-2310. [PMID: 38628211 PMCID: PMC11016425 DOI: 10.1002/fsn3.3959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 04/19/2024] Open
Abstract
The present lifestyle, dietary patterns, psychological pressure, environmental factors, and the widespread exploitation of processed substances in food production and farming have collectively contributed to a substantial expediting in the development of various health problems. Globally, researchers have been seeking natural pharmaceutical substances with the potential to be employed in treating lifestyle-related diseases or delaying their onset. Fenugreek seeds have gained significant attention in various fields, including health, nutrition, and cutting-edge nanotechnology applications, due to their versatile qualities. The current investigation offers a comprehensive discussion of the nutritional composition and therapeutic potential of fenugreek seeds, with an emphasis on their plentiful reservoir of bioactive compounds. This seed demonstrates promising medicinal potential in addressing a wide range of health issues. Significantly, these findings indicate noteworthy properties, such as antidiabetic, antioxidant, anti-obesity, hypocholesterolemic, anticancer, and cardioprotective effects. Moreover, the components of fenugreek seeds are important in the development of a multitude of foods, which is the reason why they are used extensively in the area of food research. In addition to their nutritional value, their exploration of nanotechnology reveals a promising domain, utilizing the distinctive characteristics of seeds for many purposes, such as nanoparticle synthesis and oil for edible films and nanoemulsions. This review article focuses on a comprehensive analysis of fenugreek seeds, examining their wide-ranging applications in the fields of health, nutrition, food, and nanotechnology.
Collapse
Affiliation(s)
- Zargham Faisal
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Rushba Irfan
- Faculty of Food Nutrition and Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Noor Akram
- Department of Food and NutritionGovernment College UniversityFaisalabadPakistan
| | | | - Mohib Ali Aabdi
- Department of Food Science and Technology, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Muhammad Junaid Anwar
- Department of Food Science and Technology, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Sharjeel Khawar
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Asifa Saif
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Yasir Abbas Shah
- Natural and Medical Science Research CentreUniversity of NizwaNizwaOman
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Derese Tamiru Desta
- School of Nutrition, Food Science and TechnologyHawassa UniversityHawassaEthiopia
| |
Collapse
|
6
|
Peñalver R, Ros G, Nieto G. Development of Functional Gluten-Free Sourdough Bread with Pseudocereals and Enriched with Moringa oleifera. Foods 2023; 12:3920. [PMID: 37959040 PMCID: PMC10650811 DOI: 10.3390/foods12213920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Celiac patients tend to have an unbalanced diet, because gluten-free products typically contain a high amount of fats and carbohydrates and a low amount of proteins, minerals, and dietary fiber. This research focused on the development of gluten-free functional breads using pseudocereals, psyllium, and gluten-free sourdough to replace commercial yeast, fortifying them with Moringa oleifera. Six different gluten-free breads were made with sourdough: three control breads differentiated by sourdough (quinoa, amaranth, and brown rice) and three breads enriched with moringa leaf differentiated by sourdough. The antioxidant capacity, phenolic compounds, nutritional composition, physicochemical parameters (color, pH, and acidity), folate content, amino acid profile, reducing sugars, mineral composition, mineral bioaccessibility, fatty acid profile, and sensory acceptability were evaluated. A commercial gluten-free (COM) bread was included in these analyses. Compared with COM bread, the reformulated breads were found to have better nutritional properties. Moringa leaf increased the nutritional properties of bread, and highlighted the QM (quinoa/moringa) bread as having increased protein, fiber, sucrose, glucose, maltose, phenylalanine, and cysteine. The AM (amaranth/moringa) bread was also shown to have a higher total folate content, antioxidant capacity, phenolic compounds, 9t,11t-C18:2 (CLA), and 9t-C18:1. Reformulated breads enriched with moringa could meet nutritional requirements and provide health benefits to people with celiac disease.
Collapse
Affiliation(s)
| | | | - Gema Nieto
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, 30071 Murcia, Spain; (R.P.); (G.R.)
| |
Collapse
|
7
|
Su X, Lu G, Ye L, Shi R, Zhu M, Yu X, Li Z, Jia X, Feng L. Moringa oleifera Lam.: a comprehensive review on active components, health benefits and application. RSC Adv 2023; 13:24353-24384. [PMID: 37588981 PMCID: PMC10425832 DOI: 10.1039/d3ra03584k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Moringa oleifera Lam. is an edible therapeutic plant that is native to India and widely cultivated in tropical countries. In this paper, the current application of M. oleifera was discussed by summarizing its medicinal parts, active components and potential mechanism. The emerging products of various formats such as drug preparation and product application reported in the last years were also clarified. Based on literature reports, the unique components and biological activities of M. oleifera need to be further studied. In the future, a variety of new technologies should be applied to the development of M. oleifera products, to enrich the varieties of dosage forms, improve the bitter taste masking technology, and make it better for use in the fields of food and medicine.
Collapse
Affiliation(s)
- Xinyue Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Guanzheng Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Liang Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Ruyu Shi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Xinming Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 P. R. China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| |
Collapse
|
8
|
Hoxha R, Evstatieva Y, Nikolova D. Physicochemical, Rheological, and Sensory Characteristics of Yogurt Fermented by Lactic Acid Bacteria with Probiotic Potential and Bioprotective Properties. Foods 2023; 12:2552. [PMID: 37444290 DOI: 10.3390/foods12132552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The applicability of two lactic acid bacterial strains with probiotic potential and bioprotective properties as additions in the starter culture in yogurt fermentation was examined. The studied strains, Lactobacillus delbrueckii subsp. bulgaricus KZM 2-11-3 and Lactiplantibacillus plantarum KC 5-12, inhibited the growth of Kluyveromyces lactis, Kluyveromyces marxianus, and Saccharomyces cerevisiae. The strain L. delbrueckii subsp. bulgaricus KZM 2-11-3 directly inhibited Escherichia coli. The important characteristics for the quality of the yogurt product, such as physicochemical parameters during fermentation and storage, rheological characteristics, and sensory changes during the storage of samples were determined. The yogurt samples with the strains did not differ in most parameters from the control yogurt with the commercial starter. The added strains showed stable viability in the yogurt samples during storage. The yogurt sample with L. delbrueckii subsp. bulgaricus KZM 2-11-3 and the sample with both strains based on the total evaluation were very similar to the control yogurt with the commercial starter. Using these strains as probiotic supplements to enrich the starter cultures in yogurt production will contribute to developing new products with benefits to human health.
Collapse
Affiliation(s)
- Ramize Hoxha
- Department of Biotechnology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Yana Evstatieva
- Department of Biotechnology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Dilyana Nikolova
- Department of Biotechnology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
9
|
Yapa D, Rasika D, Weerathilake W, Siriwardhana J, Priyashantha H. Effects of fermenting with Lacticaseibacillus rhamnosus GG on quality attributes and storage stability of buffalo milk yogurt incorporated with bael (Aegle marmelos) fruit pulp. NFS JOURNAL 2023. [DOI: 10.1016/j.nfs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
10
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Gomes SM, Leitão A, Alves A, Santos L. Incorporation of Moringa oleifera Leaf Extract in Yoghurts to Mitigate Children's Malnutrition in Developing Countries. Molecules 2023; 28:2526. [PMID: 36985498 PMCID: PMC10058877 DOI: 10.3390/molecules28062526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Moringa oleifera, which is rich in bioactive compounds, has numerous biological activities and is a powerful source of antioxidants and nutrients. Therefore, M. oleifera can be incorporated into food to mitigate children's malnutrition. In this work, the bioactive compounds were extracted from M. oleifera leaf powder by ultrasound-assisted solid-liquid extraction. The antioxidant and antimicrobial activities and the phenolic composition of the extract were evaluated. The extract presented a total phenolic content of 54.5 ± 16.8 mg gallic acid equivalents/g and IC50 values of 133.4 ± 12.3 mg/L for DPPH and 60.0 ± 9.9 mg/L for ABTS. Catechin, chlorogenic acid, and epicatechin were the main phenolics identified by HPLC-DAD. The obtained extract and M. oleifera leaf powder were incorporated into yoghurts and their physicochemical and biological properties were studied. The incorporation of M. oleifera did not impair the yoghurts' stability over eight weeks when compared to both negative and positive controls. The extract presented higher stability regarding syneresis but lower stability regarding TPC compared to the powder. Also, the fortified yoghurts presented higher antioxidant properties than the negative control. These findings highlight the potential use of M. oleifera powder and extract as natural additives to produce fortified foods that can be used in the mitigation of malnutrition.
Collapse
Affiliation(s)
- Sandra M. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Leitão
- LESRA—Laboratory for Separation Engineering, Chemical Reaction and Environment, Faculty of Engineering, University of Agostinho Neto, Edificio CNIC, Avenida Ho Chi Min 201, Luanda P.O. Box 815, Angola
| | - Arminda Alves
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Santos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
12
|
Trigo C, Castelló ML, Ortolá MD. Potentiality of Moringa oleifera as a Nutritive Ingredient in Different Food Matrices. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:25-37. [PMID: 36357660 PMCID: PMC9947086 DOI: 10.1007/s11130-022-01023-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Given the growing interest of today's society in improving the nutritional profile of the food it consumes, industrial food reformulation is booming. In this sense, due to its high yield, good adaptation to climate change and high nutritional potential, Moringa oleifera may be an alternative means of fortifying products, in order to improve different food matrices. The different parts of this plant (leaves, seeds, flowers, pods, roots…) can be marketed for their nutritional and medicinal attributes. In this analysis, various scientific studies have been compiled that evaluate the potential of Moringa oleifera in terms of its incorporation into food matrices and its influence on the final sensory characteristics. In general, the incorporation of different parts of moringa into products, such as bread, pastries, snacks and beverages, increases the nutritional profile of the product (proteins, essential amino acids, minerals and fiber), the dried leaf powder representing an alternative to milk and eggs and helping vegans/vegetarians to consume the same protein content. In the case of dairy and meat products, the goal is to improve the antioxidant and antimicrobial capacity. In every food product, adding high concentrations of moringa leads to greenish colorations, herbal flavors and changes in the mechanical properties (texture, hardness, chewiness, volume and sponginess), negatively impacting the acceptance of the final product. This bibliographic review highlights the need to continue researching the technological properties with the dual aim of incorporating different parts of moringa into food matrices and increasing consumer familiarity with this product.
Collapse
Affiliation(s)
- Carla Trigo
- Institute of Food Engineering for Development, Universitat Politècnica de València, Camino de Vera S/N. 46022, Valencia, Spain
| | - María Luisa Castelló
- Institute of Food Engineering for Development, Universitat Politècnica de València, Camino de Vera S/N. 46022, Valencia, Spain
| | - María Dolores Ortolá
- Institute of Food Engineering for Development, Universitat Politècnica de València, Camino de Vera S/N. 46022, Valencia, Spain
| |
Collapse
|
13
|
Mandal D, Sarkar T, Chakraborty R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl Biochem Biotechnol 2023; 195:1319-1513. [PMID: 36219334 PMCID: PMC9551254 DOI: 10.1007/s12010-022-04132-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Medicinal or herbal spices are grown in tropical moist evergreen forestland, surrounding most of the tropical and subtropical regions of Eastern Himalayas in India (Sikkim, Darjeeling regions), Bhutan, Nepal, Pakistan, Iran, Afghanistan, a few Central Asian countries, Middle East, USA, Europe, South East Asia, Japan, Malaysia, and Indonesia. According to the cultivation region surrounded, economic value, and vogue, these spices can be classified into major, minor, and colored tropical spices. In total, 24 tropical spices and herbs (cardamom, black jeera, fennel, poppy, coriander, fenugreek, bay leaves, clove, chili, cassia bark, black pepper, nutmeg, black mustard, turmeric, saffron, star anise, onion, dill, asafoetida, celery, allspice, kokum, greater galangal, and sweet flag) are described in this review. These spices show many pharmacological activities like anti-inflammatory, antimicrobial, anti-diabetic, anti-obesity, cardiovascular, gastrointestinal, central nervous system, and antioxidant activities. Numerous bioactive compounds are present in these selected spices, such as 1,8-cineole, monoterpene hydrocarbons, γ-terpinene, cuminaldehyde, trans-anethole, fenchone, estragole, benzylisoquinoline alkaloids, eugenol, cinnamaldehyde, piperine, linalool, malabaricone C, safrole, myristicin, elemicin, sinigrin, curcumin, bidemethoxycurcumin, dimethoxycurcumin, crocin, picrocrocin, quercetin, quercetin 4'-O-β-glucoside, apiol, carvone, limonene, α-phellandrene, galactomannan, rosmarinic acid, limonene, capsaicinoids, eugenol, garcinol, and α-asarone. Other than that, various spices are used to synthesize different types of metal-based and polymer-based nanoparticles like zinc oxide, gold, silver, selenium, silica, and chitosan nanoparticles which provide beneficial health effects such as antioxidant, anti-carcinogenic, anti-diabetic, enzyme retardation effect, and antimicrobial activity. The nanoparticles can also be used in environmental pollution management like dye decolorization and in chemical industries to enhance the rate of reaction by the use of catalytic activity of the nanoparticles. The nutritional value, phytochemical properties, health advantages, and both traditional and modern applications of these spices, along with their functions in food fortification, have been thoroughly discussed in this review.
Collapse
Affiliation(s)
- Debopriya Mandal
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
14
|
Vishwakarma S, Genu Dalbhagat C, Mandliya S, Niwas Mishra H. Investigation of natural food fortificants for improving various properties of fortified foods: A review. Food Res Int 2022; 156:111186. [DOI: 10.1016/j.foodres.2022.111186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022]
|
15
|
Kumar H, Bhardwaj K, Cruz-Martins N, Sharma R, Siddiqui SA, Dhanjal DS, Singh R, Chopra C, Dantas A, Verma R, Dosoky NS, Kumar D. Phyto-Enrichment of Yogurt to Control Hypercholesterolemia: A Functional Approach. Molecules 2022; 27:molecules27113479. [PMID: 35684416 PMCID: PMC9182380 DOI: 10.3390/molecules27113479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Cholesterol is essential for normal human health, but elevations in its serum levels have led to the development of various complications, including hypercholesterolemia (HC). Cholesterol accumulation in blood circulation formsplaques on artery walls and worsens the individuals’ health. To overcome this complication, different pharmacological and non-pharmacological approaches are employed to reduce elevated blood cholesterol levels. Atorvastatin and rosuvastatin are the most commonly used drugs, but their prolonged use leads to several acute side effects. In recent decades, the potential benefit of ingesting yogurt on lipid profile has attracted the interest of researchers and medical professionals worldwide. This review aims to give an overview of the current knowledge about HC and the different therapeutic approaches. It also discusses the health benefits of yogurt consumption and highlights the overlooked phyto-enrichment option to enhance the yogurt’s quality. Finally, clinical studies using different phyto-enriched yogurts for HC management are also reviewed. Yogurt has a rich nutritional value, but its processing degrades the content of minerals, vitamins, and other vital constituents with beneficial health effects. The option of enriching yogurt with phytoconstituents has drawn a lot of attention. Different pre-clinical and clinical studies have provided new insights on their benefits on gut microbiota and human health. Thus, the yogurtphyto-enrichment with stanol and β-glucan have opened new paths in functional food industries and found healthy andeffective alternatives for HC all along with conventional treatment approaches.
Collapse
Affiliation(s)
- Harsh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (H.K.); (R.S.); (A.D.)
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (K.B.); (R.V.)
| | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra PRD, Portugal
- Correspondence: (N.C.-M.); (N.S.D.); (D.K.)
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (H.K.); (R.S.); (A.D.)
| | - Shahida Anusha Siddiqui
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany;
- Department of Biotechnology and Sustainability, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (R.S.); (C.C.)
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (R.S.); (C.C.)
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (R.S.); (C.C.)
| | - Adriana Dantas
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (H.K.); (R.S.); (A.D.)
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (K.B.); (R.V.)
| | - Noura S. Dosoky
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Correspondence: (N.C.-M.); (N.S.D.); (D.K.)
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (H.K.); (R.S.); (A.D.)
- Correspondence: (N.C.-M.); (N.S.D.); (D.K.)
| |
Collapse
|
16
|
Buffalo stirred yoghurt fortified with grape seed extract: New insights into its functional properties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Hamed AM, Awad AA, Abdel-Mobdy AE, Alzahrani A, Salamatullah AM. Buffalo Yogurt Fortified with Eucalyptus ( Eucalyptus camaldulensis) and Myrrh ( Commiphora Myrrha) Essential Oils: New Insights into the Functional Properties and Extended Shelf Life. Molecules 2021; 26:6853. [PMID: 34833944 PMCID: PMC8625777 DOI: 10.3390/molecules26226853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/04/2022] Open
Abstract
Eucalyptus (Eucalyptus camaldulensis) and Myrrh (Commiphora Myrrha) essential oils (EOs) stand out for their benefits in terms of health and functionality. Buffalo set yogurt enriched with different concentrations of EOs (0.3, 0.6, and 0.9%) were investigated. The effects of addition on sensory, syneresis, antibacterial activity, and bioactive properties (total phenol content and antioxidant activity) of yogurt were studied. The most acceptable organoleptic properties of treated yogurt were those samples treated with Eucalyptus oil. The levels of syneresis were decreased by increasing the concentration of EOs. Moreover, the antioxidant activity, antibacterial activity, and total phenolic content were enhanced by increasing the concentration of EOs. Yogurt with 0.9% Eucalyptus oil showed the highest antioxidant activity and total phenolic content. The same concentration of Eucalyptus oil showed the highest antibacterial activity against S. typhimurium (the inhibition zone was 20.63 mm) then E. coli (the inhibition zone was 19.43 mm). On the other hand, the highest antibacterial effect against L. monocytogene was for Myrrh oil-enriched yogurt by 0.9% and the inhibition zone was 19.21 mm. The obtained results showed that Eucalyptus and Myrrh oils can be applied to yogurt to improve its beneficial properties in terms of physical characteristics and for human health due to their antioxidant activity and phenolic materials.
Collapse
Affiliation(s)
- Ahmed Mohamed Hamed
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (A.A.A.); (A.E.A.-M.)
| | - Awad A. Awad
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (A.A.A.); (A.E.A.-M.)
| | - Ahmed E. Abdel-Mobdy
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (A.A.A.); (A.E.A.-M.)
| | - Abdulhakeem Alzahrani
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.); (A.M.S.)
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.); (A.M.S.)
| |
Collapse
|
18
|
Abdelmontaleb HS, Othman FA, Degheidi MA, Abbas KA. The influence of quinoa flour addition on the physicochemical, antioxidant activity, textural, and sensory characteristics of UF‐soft cheese during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Fathia A. Othman
- Dairy Department, Faculty of Agriculture Fayoum University Fayoum Egypt
| | | | - Khaled A. Abbas
- Dairy Department, Faculty of Agriculture Fayoum University Fayoum Egypt
| |
Collapse
|
19
|
Chemical and Technological Characterization of Dairy Products. Foods 2020; 9:foods9101475. [PMID: 33081088 PMCID: PMC7602709 DOI: 10.3390/foods9101475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022] Open
|