1
|
Palos-Hernández A, González-Paramás AM, Santos-Buelga C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2024; 30:55. [PMID: 39795112 PMCID: PMC11722096 DOI: 10.3390/molecules30010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Phenolic compounds present in plants and foods are receiving increasing attention for their bioactive and sensory properties, accompanied by consumers' interest in products with health benefits derived from natural rather than artificial sources. This, together with the sustainable development goals for the 21st century, has driven the development of green extraction techniques that allow obtaining these compounds with the safety and quality required to be applied in the food, cosmetic and pharmaceutical industries. Green extraction of natural products involves practices aiming at reducing the environmental impact of the preparation processes, based on using natural or less-polluting solvents, lower energetic requirements and shorter extraction times, while providing greater efficiency in the recovery of target compounds. In this article, the principles of sustainable extraction techniques and the advances produced in recent years regarding green isolation of polyphenols from plants, food and food waste are reviewed.
Collapse
Affiliation(s)
- Andrea Palos-Hernández
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
| | - Ana M. González-Paramás
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Celestino Santos-Buelga
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Silva-Barbieri D, Escalona N, Salazar FN, López F, Pérez-Correa JR. Novel protein stabilization in white wine: A study on thermally treated zirconia-alumina composites. Food Res Int 2024; 186:114337. [PMID: 38729718 DOI: 10.1016/j.foodres.2024.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
A major concern for wineries is haze formation in white wines due to protein instability. Despite its prevalent use, the conventional bentonite method has shortcomings, including potential alteration of color and aroma, slow processing times, and notable wine wastage. Zirconium oxide (ZrO2) effectively removes proteins without affecting wine characteristics. However, producing cost-effective ZrO2 materials with efficient protein removal capabilities poses a significant challenge. This research aims to assess the viability of designing a porous material impregnated with zirconia to remove turbidity-causing proteins effectively. For this purpose, the support material alone (Al2O3) and the zirconia-impregnated support (ZrO2/Al2O3) were subjected to different calcination temperatures. It was observed that high-temperature treatments (750 °C) enhanced wine stability and protein adsorption capacity. The optimal adsorbent achieved a notable reduction in turbidity, decreasing the ΔNTU from 42 to 18, alongside a significant 44 % reduction in the total protein content, particularly affecting proteins in the molecular weight range of 10 to 70 kDa. This result is attributed to modifying the textural properties of ZrO2/Al2O3, characterized by the reduction of acidic sites, augmented pore diameters from 4.81 to 7.74 nm, and the emergence of zirconia clusters across the surface of the porous support. In summary, this study presents the first application of zirconia on the alumina support surface for protein stabilization in white wine. Combining ZrO2/Al2O3 and a high-temperature treatment emerges as a promising, cost-efficient, and environmentally sustainable strategy for protein removal in white wine.
Collapse
Affiliation(s)
- Daniela Silva-Barbieri
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile
| | - Néstor Escalona
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| | - Fernando N Salazar
- Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716, Valparaíso, Chile
| | - Francisco López
- Departament d'Enginyeria Química, Facultat d'Enologia, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - José R Pérez-Correa
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| |
Collapse
|
3
|
Noviello M, Paradiso VM, Natrella G, Gambacorta G, Faccia M, Caponio F. Application of toasted vine-shoot chips and ultrasound treatment in the ageing of Primitivo wine. ULTRASONICS SONOCHEMISTRY 2024; 104:106826. [PMID: 38422810 PMCID: PMC10909903 DOI: 10.1016/j.ultsonch.2024.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Ageing wine in barrels is an historical practice used to improve the aromatic complexity of wine, but due to the high cost and the long ageing period, alternative approaches have been developed, such as the use of wood chips and ultrasound treatment. The present paper reports the results of an investigation performed on wine (cv. Primitivo). Three treatments were investigated: a) control wine untreated; b) wine with toasted vine-shoot chips (10 g/L); c) wine with toasted vine-shoot chips (10 g/L) and treated by ultrasound. Wines were analysed after 7, 14, 21, and 28 days. The application of ultrasound combined with vine-shoot chips promoted tannin evolution, thereby accelerating the ageing process of wine. The chips addition decreased the total anthocyanins content and increased the stilbenes (trans-resveratrol and trans-piceid) and wood-related aromas (i.e., furfural, 5-methylfurfural) concentration. Finally, wines added with chips were richer in woody, vanilla, oak, and chocolate notes and more preferred by the tasters.
Collapse
Affiliation(s)
- Mirella Noviello
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Vito Michele Paradiso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. 6, Lecce-Monteroni, I-73100 Lecce, Italy.
| | - Giuseppe Natrella
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Michele Faccia
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| |
Collapse
|
4
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
5
|
Zhang QA, Zheng H, Lin J, Nie G, Fan X, García-Martín JF. The state-of-the-art research of the application of ultrasound to winemaking: A critical review. ULTRASONICS SONOCHEMISTRY 2023; 95:106384. [PMID: 37001419 PMCID: PMC10457577 DOI: 10.1016/j.ultsonch.2023.106384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
As a promising non-thermal physical technology, ultrasound has attracted extensive attention in recent years, and has been applied to many food processing operation units, such as involving filtration, freezing, thawing, sterilization, cutting, extraction, aging, etc. It is also widely used in the processing of meat products, fruits and vegetables, and dairy products. With regard to its application in winemaking, most of the studies available in the literature are focused on the impact of ultrasound on a certain characteristic of wine, lacking of systematic sorting of these literatures. This review systematically summarizes and explores the current achievements and problems of the application of ultrasound to the different stages of winemaking, including extraction, fermentation, aging and sterilization. Summarizing the advantages and disadvantages of ultrasound application in winemaking and its development in future development.
Collapse
Affiliation(s)
- Qing-An Zhang
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Hongrong Zheng
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Junyan Lin
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Guangmin Nie
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xuehui Fan
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | | |
Collapse
|
6
|
Emilio C, Tomas R, Adelaide G, Andrea N. High power ultrasound treatment of crushed grapes: Beyond the extraction phenomena. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235602011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The treatment of white and red crushed grapes by high power ultrasounds (US) represents an emerging technology in winemaking. In 2019, it was officially recognized by OIV through the resolution n°616-2019, and it was also approved by European Union in January 2022. The US effect on extraction mechanisms was widely studied, but more researches are needed to better understand the ultrasound effect on some specific classes of grape compounds. This research aimed to highlight at laboratory scale some specific effects of ultrasounds on some key compounds of white and red grapes. The samples were sonicated at different frequency (20-30 kHz), time (1-10 min), and power (30-90%) technological conditions used in maceration, to obtain valuable information on potential technological transferability. Valuable results were obtained regarding the release of thiols from their precursors, and the reactivity changes of unstable proteins of white wines. The experimental trails on red grape varieties allowed a maintenance of free anthocyanins and no degradative effects were highlighted. Significant and valuable effects were determined also on the tannin polymerization, with an astringency decrease.
The sonication treatment of crushed grapes showed several chemical effects that contribute to decreasing the winemaking inputs and preserving the wine quality. The process conditions must be managed related to grape variety and ripeness for a precision winemaking.
Collapse
|
7
|
Bebek Markovinović A, Putnik P, Bičanić P, Brdar D, Duralija B, Pavlić B, Milošević S, Rocchetti G, Lucini L, Bursać Kovačević D. A Chemometric Investigation on the Functional Potential in High Power Ultrasound (HPU) Processed Strawberry Juice Made from Fruits Harvested at two Stages of Ripeness. Molecules 2022; 28:138. [PMID: 36615332 PMCID: PMC9822254 DOI: 10.3390/molecules28010138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This work aimed to investigate the influence of high-power ultrasound (HPU) technology on the stability of bioactive compounds in strawberry juices obtained from fruits with different stages of ripeness (75% vs. 100%) and stored at 4 °C for 7 days. HPU parameters were amplitude (25, 50, 75, and 100%), pulses (50 vs. 100%) and treatment time (5 vs. 10 min). Amplitude and pulse had a significant effect (p ≤ 0.05) on all bioactive compounds except flavonols and hydroxycinnamic acids. The treatment duration of 5 min vs. 10 min had a significant positive impact on the content of anthocyanins, flavonols and condensed tannins, while the opposite was observed for total phenols, whereas no statistically significant effect was observed for hydroxycinnamic acids. The temperature changes during HPU treatment correlated positively with almost all HPU treatment parameters (amplitude, pulse, energy, power, frequency). Optimal parameters of HPU were obtained for temperature changes, where the highest content of a particular group of bioactive compounds was obtained. Results showed that by combining fruits with a certain ripeness and optimal HPU treatment, it would be possible to produce juices with highly preserved bioactive compounds, while HPU technology has prospects for application in functional food products.
Collapse
Affiliation(s)
- Anica Bebek Markovinović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Paula Bičanić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Dora Brdar
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Boris Duralija
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Sanja Milošević
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Gavahian M, Manyatsi TS, Morata A, Tiwari BK. Ultrasound-assisted production of alcoholic beverages: From fermentation and sterilization to extraction and aging. Compr Rev Food Sci Food Saf 2022; 21:5243-5271. [PMID: 36214172 DOI: 10.1111/1541-4337.13043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/07/2022] [Accepted: 08/26/2022] [Indexed: 01/28/2023]
Abstract
Ultrasound is sound waves above 20 kHz that can be used as a nonthermal ''green'' technology for agri-food processing. It has a cavitation effect, causing bubbles to form and collapse rapidly as they travel through the medium during ultrasonication. Therefore, it inactivates microorganisms and enzymes through cell membrane disruption with physicochemical and sterilization effects on foods or beverages. This emerging technology has been explored in wineries to improve wine color, taste, aroma, and phenolic profile. This paper aims to comprehensively review the research on ultrasound applications in the winery and alcoholic beverages industry, discuss the impacts of this process on the physicochemical properties of liquors, the benefits involved, and the research needed in this area. Studies have shown that ultrasonic technology enhances wine maturation, improves wine fermentation, accelerates wine aging, and deactivates microbes while enhancing quality, as observed with better critical aging markers such as phenolic compounds and color intensity. Besides, ultrasound enhances phytochemical, physicochemical, biological, and organoleptic properties of alcoholic beverages. For example, this technology increased anthocyanin in red wine by 50%. It also enhanced the production rate by decreasing the aging time by more than 90%. Ultrasound can be considered an economically viable technology that may contribute to wineries' waste valorization, resource efficiency improvement, and industry profit enhancement. Despite numerous publications and successful industrial applications discussed in this paper, ultrasound up-scaling and applications for other types of liquors need further efforts.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Republic of China, Taiwan
| | - Thabani Sydney Manyatsi
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Republic of China, Taiwan
| | - Antonio Morata
- Departamento de Química y Tecnología de Alimentos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Brijesh K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| |
Collapse
|
9
|
Yuan JF, Chen ZY, Lai YT, Qiu ZJ, Wang DH, Zhao JF, Sun JR, Li X. Microwave Irradiation: the Influence on the Production of Xanthylium Cation Pigments in Model Wine. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Yuan JF, Lai YT, Chen ZY, Song HX, Zhang J, Wang DH, Gong MG, Sun JR. Microwave Irradiation: Effects on the Change of Colour Characteristics and Main Phenolic Compounds of Cabernet Gernischt Dry Red Wine during Storage. Foods 2022; 11:foods11121778. [PMID: 35741976 PMCID: PMC9222549 DOI: 10.3390/foods11121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Wine colour is an essential organoleptic property considered by consumers. In this paper, the potential effects on colour characteristics and the content of main phenolic compounds in red wine under microwave irradiation were investigated during wine storage. The results showed that the changing trend of colour characteristics of microwave-treated and untreated wines was very similar. Moreover, total phenolic compounds, total monomeric anthocyanins, main anthocyanins, main flavonoids, and main phenolic acids (gallic acid; caffeic acid; syringic acid; (+)-catechin; Cy-3-glu; Mv-3-glu) also showed similar change trends during storage. In other words, microwave irradiation had a long-term effect on the colour properties and main phenolic compounds of red wine, changes that require long-time aging in traditional processing. In terms of the studied parameters, the changes in microwave-treated wine were faster than those in untreated wine. These results showed that microwave technology, as a promising artificial aging technology, could in a short time produce red wine of similar quality to traditional aging.
Collapse
|
11
|
Silva-Barbieri D, Salazar FN, López F, Brossard N, Escalona N, Pérez-Correa JR. Advances in White Wine Protein Stabilization Technologies. Molecules 2022; 27:molecules27041251. [PMID: 35209041 PMCID: PMC8876787 DOI: 10.3390/molecules27041251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
The unstable proteins in white wine cause haze in bottles of white wine, degrading its quality. Thaumatins and chitinases are grape pathogenesis-related (PR) proteins that remain stable during vinification but can precipitate at high temperatures after bottling. The white wine protein stabilization process can prevent haze by removing these unstable proteins. Traditionally, bentonite is used to remove these proteins; however, it is labor-intensive, generates wine losses, affects wine quality, and harms the environment. More efficient protein stabilization technologies should be based on a better understanding of the main factors and mechanisms underlying protein precipitation. This review focuses on recent developments regarding the instability and removal of white wine proteins, which could be helpful to design more economical and environmentally friendly protein stabilization methods that better preserve the products´ quality.
Collapse
Affiliation(s)
- Daniela Silva-Barbieri
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (D.S.-B.); (N.E.); (J.R.P.-C.)
| | - Fernando N. Salazar
- Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716, Valparaíso 2360100, Chile
- Correspondence: ; Tel.: +56-32-2274221
| | - Francisco López
- Departament d’Enginyeria Química, Facultat d’Enologia, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Natalia Brossard
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Néstor Escalona
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (D.S.-B.); (N.E.); (J.R.P.-C.)
- Millenium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - José R. Pérez-Correa
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (D.S.-B.); (N.E.); (J.R.P.-C.)
| |
Collapse
|
12
|
Ultrasound treatment of red wine: Effect on polyphenols, mathematical modeling, and scale-up considerations. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Ahmad I, Sadiq MB, Liu A, Benjamin TA, Gump BH. Effect of Low-Frequency Ultrasonication on Red Wine Astringency. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.2002228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Imran Ahmad
- Food, Agriculture and Bio-innovation Laboratories, Chaplin School of Hospitality and Tourism Management, Florida International University (Biscayne Bay Campus), North Miami, Florida, USA
| | - Muhammad B. Sadiq
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - A. Liu
- Food, Agriculture and Bio-innovation Laboratories, Chaplin School of Hospitality and Tourism Management, Florida International University (Biscayne Bay Campus), North Miami, Florida, USA
| | - T-A. Benjamin
- Food, Agriculture and Bio-innovation Laboratories, Chaplin School of Hospitality and Tourism Management, Florida International University (Biscayne Bay Campus), North Miami, Florida, USA
| | - Barry H. Gump
- Brew Science Program, Chaplin School of Hospitality and Tourism Management (FIU Brew Lab), Florida International University (Biscayne Bay Campus), North Miami, Florida USA
| |
Collapse
|
14
|
Carrera C, Aliaño-González MJ, Valaityte M, Ferreiro-González M, Barbero GF, Palma M. A Novel Ultrasound-Assisted Extraction Method for the Analysis of Anthocyanins in Potatoes ( Solanum tuberosum L.). Antioxidants (Basel) 2021; 10:antiox10091375. [PMID: 34573008 PMCID: PMC8468541 DOI: 10.3390/antiox10091375] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023] Open
Abstract
Purple potato is one of the least known and consumed potato varieties. It is as rich in nutrients, amino acids and starches as the rest of the potato varieties, but it also exhibits a high content of anthocyanins, which confer it with some attractive health-related properties, such as antioxidant, pain-relieving, anti-inflammatory and other promising properties regarding the treatment of certain diseases. A novel methodology based on ultrasound-assisted extraction has been optimized to achieve greater yields of anthocyanins. Optimal extraction values have been established at 70 °C using 20 mL of a 60% MeOH:H2O solution, with a pH of 2.90 and a 0.5 s−1 cycle length at 70% of the maximum amplitude for 15 min. The repeatability and intermediate precision of the extraction method have been proven by its relative standard deviation (RSD) below 5%. The method has been tested on Vitelotte, Double Fun, Highland and Violet Queen potatoes and has demonstrated its suitability for the extraction and quantification of the anthocyanins found in these potato varieties, which exhibit notable content differences. Finally, the antioxidant capacity of these potato varieties has been determined by means of 2,2-diphenyl-1-picrylhydrazyl (DDPH) radical scavenging and the values obtained were similar to those previously reported in the literature.
Collapse
Affiliation(s)
- Ceferino Carrera
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain; (C.C.); (M.J.A.-G.); (M.F.-G.); (M.P.)
| | - María José Aliaño-González
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain; (C.C.); (M.J.A.-G.); (M.F.-G.); (M.P.)
| | - Monika Valaityte
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Spain;
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain; (C.C.); (M.J.A.-G.); (M.F.-G.); (M.P.)
| | - Gerardo F. Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain; (C.C.); (M.J.A.-G.); (M.F.-G.); (M.P.)
- Correspondence: ; Tel.: +34-956-016355; Fax: +34-956-016460
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain; (C.C.); (M.J.A.-G.); (M.F.-G.); (M.P.)
| |
Collapse
|
15
|
High-power ultrasound on the protein stability of white wines: Preliminary study of amplitude and sonication time. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Exploring Olfactory-Oral Cross-Modal Interactions through Sensory and Chemical Characteristics of Italian Red Wines. Foods 2020; 9:foods9111530. [PMID: 33114385 PMCID: PMC7692166 DOI: 10.3390/foods9111530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
This work aimed at investigating red wine olfactory–oral cross-modal interactions, and at testing their impact on the correlations between sensory and chemical variables. Seventy-four Italian red whole wines (WWs) from 10 varieties, and corresponding deodorized wines (DWs), were evaluated by sensory descriptive assessment. Total phenols, proanthocyanidins, ethanol, reducing sugars, pH, titratable and volatile acidity were determined. PCA results highlighted different sensory features of the 10 wine types. ANOVAs (p < 0.05) showed that olfactory cues might play modulation effects on the perception of in-mouth sensations with 7 (harsh, unripe, dynamic, complex, surface smoothness, sweet, and bitter) out of 10 oral descriptors significantly affected by odours. Three weak but significant positive correlations (Pearson, p < 0.0001) were statistically found and supported in a cognitive dimension: spicy and complex; dehydrated fruits and drying; vegetal and unripe. In the absence of volatiles, correlation coefficients between sensory and chemical parameters mostly increased. Proanthocyanidins correlated well with drying and dynamic astringency, showing highest coefficients (r > 0.7) in absence of olfactory–oral interactions. Unripe astringency did not correlate with polyphenols supporting the idea that this sub-quality is a multisensory feeling greatly impacted by odorants. Results support the significance of cross-modal interactions during red wine tasting, confirming previous findings and adding new insights on astringency sub-qualities and their predictive parameters.
Collapse
|