1
|
Zhao TY, Bian Y, Zhou Y, Zhang Y, Feng XS, Chen F. Trends in pretreatment and determination methods for furfurals in foods: Update since 2017. Food Res Int 2025; 201:115600. [PMID: 39849758 DOI: 10.1016/j.foodres.2024.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/04/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Furfurals, key derivatives of Maillard reactions commonly found in everyday foods, have been identified as having significant toxic effects on human health. Excessive intake of furfurals can lead symptoms such as weight loss, poor nutrient metabolism which followed by disease occurrence. The severe carcinogenicity, mutagenicity and genotoxicity of furfurals were well recognized recently. In response, international organizations have established strict limits on the allowable levels of furfurals in food products. Therefore, it is of paramount importance to implement control which mediated by modern pretreatment and analytical techniques, towards the daily accessibility of furfurals. SCOPE AND APPROACH This review seeks to present a comprehensive overview of recent advancements in the pretreatment and analytical techniques for furfurals in food from 2017 to 2023. Various pretreatment methods, such as liquid phase microextraction, solid phase extraction, solid phase microextraction, and QuEChERS, as well as analytical technologies like liquid chromatography-based methods and gas chromatography-based methods, are thoroughly discussed in terms of their mechanisms, benefits, and limitations. KEY FINDINGS AND CONCLUSIONS Currently, various pretreatment and analytical techniques with advantages and limitations had been proposed. The development of novel materials does facilitate the optimization and application of microextraction based pretreatment platforms which share with enhanced extraction efficiency. In addition, the development of novel targeting/sensing materials along with the utilization of high-resolution mass spectrometry could promote the determination sensitivity. In future, development of novel absorbents which mediates more desirable pretreatment methods, and automated and miniaturized on-site analytical instruments for furfurals determination still deserve indepth invesigation.
Collapse
Affiliation(s)
- Tong-Yi Zhao
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Fang Chen
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
2
|
Zhang D, Wei Z, Han Y, Duan Y, Shi B, Ma W. A Review on Wine Flavour Profiles Altered by Bottle Aging. Molecules 2023; 28:6522. [PMID: 37764298 PMCID: PMC10534415 DOI: 10.3390/molecules28186522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The wine flavour profile directly determines the overall quality of wine and changes significantly during bottle aging. Understanding the mechanism of flavour evolution during wine bottle aging is important for controlling wine quality through cellar management. This literature review summarises the changes in volatile compounds and non-volatile compounds that occur during wine bottle aging, discusses chemical reaction mechanisms, and outlines the factors that may affect this evolution. This review aims to provide a deeper understanding of bottle aging management and to identify the current literature gaps for future research.
Collapse
Affiliation(s)
- Di Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Ziyu Wei
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yufeng Han
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yaru Duan
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Baohui Shi
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Wen Ma
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
3
|
Amer B, Deshpande RR, Bird SS. Simultaneous Quantitation and Discovery (SQUAD) Analysis: Combining the Best of Targeted and Untargeted Mass Spectrometry-Based Metabolomics. Metabolites 2023; 13:metabo13050648. [PMID: 37233689 DOI: 10.3390/metabo13050648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Untargeted and targeted approaches are the traditional metabolomics workflows acquired for a wider understanding of the metabolome under focus. Both approaches have their strengths and weaknesses. The untargeted, for example, is maximizing the detection and accurate identification of thousands of metabolites, while the targeted is maximizing the linear dynamic range and quantification sensitivity. These workflows, however, are acquired separately, so researchers compromise either a low-accuracy overview of total molecular changes (i.e., untargeted analysis) or a detailed yet blinkered snapshot of a selected group of metabolites (i.e., targeted analysis) by selecting one of the workflows over the other. In this review, we present a novel single injection simultaneous quantitation and discovery (SQUAD) metabolomics that combines targeted and untargeted workflows. It is used to identify and accurately quantify a targeted set of metabolites. It also allows data retro-mining to look for global metabolic changes that were not part of the original focus. This offers a way to strike the balance between targeted and untargeted approaches in one single experiment and address the two approaches' limitations. This simultaneous acquisition of hypothesis-led and discovery-led datasets allows scientists to gain more knowledge about biological systems in a single experiment.
Collapse
Affiliation(s)
- Bashar Amer
- Thermo Fisher Scientific, San Jose, 95134 CA, USA
| | | | - Susan S Bird
- Thermo Fisher Scientific, San Jose, 95134 CA, USA
| |
Collapse
|
4
|
da Silva Zandonadi F, dos Santos EAF, Marques MS, Sussulini A. Metabolomics: A Powerful Tool to Understand the Schizophrenia Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:105-119. [DOI: 10.1007/978-3-030-97182-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Flavor Chemical Profiles of Cabernet Sauvignon Wines: Six Vintages from 2013 to 2018 from the Eastern Foothills of the Ningxia Helan Mountains in China. Foods 2021; 11:foods11010022. [PMID: 35010148 PMCID: PMC8750599 DOI: 10.3390/foods11010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
The eastern foothills of the Helan Mountains in the Ningxia region (Ningxia), is a Chinese wine-producing region, where Cabernet Sauvignon is the main grape cultivar; however, little compositional or flavor information has been reported on Ningxia wines. Oenological parameters, volatile profiles, and phenolic profiles were determined for 98 Ningxia Cabernet Sauvignon wines from the 2013–2018 vintages, as well as 16 from Bordeaux and California, for comparison. Ningxia wines were characterized by high ethanol, low acidity, and high anthocyanin contents. Multivariate analysis revealed that citronellol and 12 characteristic phenolic compounds distinguish Ningxia wines from Bordeaux and California wines. The concentrations of most phenolic compounds were highest in the 2018 Ningxia vintage and decreased with the age of the vintage. To our knowledge, this is the first extensive regionality study on red wines from the Ningxia region.
Collapse
|
6
|
Crook AA, Zamora-Olivares D, Bhinderwala F, Woods J, Winkler M, Rivera S, Shannon CE, Wagner HR, Zhuang DL, Lynch JE, Berryhill NR, Runnebaum RC, Anslyn EV, Powers R. Combination of two analytical techniques improves wine classification by Vineyard, Region, and vintage. Food Chem 2021; 354:129531. [PMID: 33756314 DOI: 10.1016/j.foodchem.2021.129531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Three important wine parameters: vineyard, region, and vintage year, were evaluated using fifteen Vitis vinifera L. 'Pinot noir' wines derived from the same scion clone (Pinot noir 667). These wines were produced from two vintage years (2015 and 2016) and eight different regions along the Pacific Coast of the United States. We successfully improved the classification of the selected Pinot noir wines by combining an untargeted 1D 1H NMR analysis with a targeted peptide based differential sensing array. NMR spectroscopy was used to evaluate the chemical fingerprint of the wines, whereas the peptide-based sensing array is known to mimic the senses of taste, smell, and palate texture by characterizing the phenolic profile. Multivariate and univariate statistical analyses of the combined NMR and differential sensing array dataset classified the genetically identical Pinot noir wines on the basis of distinctive metabolic signatures associated with the region of growth, vineyard, and vintage year.
Collapse
Affiliation(s)
- Alexandra A Crook
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, United States
| | - Diana Zamora-Olivares
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States; Texas Institute for Discovery Education in Science and Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, United States
| | - Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, United States; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588, United States; Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States
| | - Jade Woods
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, United States
| | - Michelle Winkler
- Texas Institute for Discovery Education in Science and Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, United States
| | - Sebastian Rivera
- Texas Institute for Discovery Education in Science and Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, United States
| | - Cassandra E Shannon
- Texas Institute for Discovery Education in Science and Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, United States
| | - Holden R Wagner
- Texas Institute for Discovery Education in Science and Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, United States
| | - Deborah L Zhuang
- Texas Institute for Discovery Education in Science and Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, United States
| | - Jessica E Lynch
- Texas Institute for Discovery Education in Science and Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, United States
| | - Nathan R Berryhill
- Texas Institute for Discovery Education in Science and Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, United States
| | - Ron C Runnebaum
- Department of Viticulture and Enology, and Department of Chemical Engineering, University of California-Davis, Davis, CA 95616, United States.
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, United States; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588, United States.
| |
Collapse
|
7
|
Solovyev PA, Fauhl-Hassek C, Riedl J, Esslinger S, Bontempo L, Camin F. NMR spectroscopy in wine authentication: An official control perspective. Compr Rev Food Sci Food Saf 2021; 20:2040-2062. [PMID: 33506593 DOI: 10.1111/1541-4337.12700] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Wine authentication is vital in identifying malpractice and fraud, and various physical and chemical analytical techniques have been employed for this purpose. Besides wet chemistry, these include chromatography, isotopic ratio mass spectrometry, optical spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy, which have been applied in recent years in combination with chemometric approaches. For many years, 2 H NMR spectroscopy was the method of choice and achieved official recognition in the detection of sugar addition to grape products. Recently, 1 H NMR spectroscopy, a simpler and faster method (in terms of sample preparation), has gathered more and more attention in wine analysis, even if it still lacks official recognition. This technique makes targeted quantitative determination of wine ingredients and nontargeted detection of the metabolomic fingerprint of a wine sample possible. This review summarizes the possibilities and limitations of 1 H NMR spectroscopy in analytical wine authentication, by reviewing its applications as reported in the literature. Examples of commercial and open-source solutions combining NMR spectroscopy and chemometrics are also examined herein, together with its opportunities of becoming an official method.
Collapse
Affiliation(s)
- Pavel A Solovyev
- Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige, 38010, Italy
| | - Carsten Fauhl-Hassek
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Unit Product Identity, Supply Chains and Traceability, Max-Dohrn Strasse, 8-10, Berlin, 10589, Germany
| | - Janet Riedl
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Unit Product Identity, Supply Chains and Traceability, Max-Dohrn Strasse, 8-10, Berlin, 10589, Germany
| | - Susanne Esslinger
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Unit Product Identity, Supply Chains and Traceability, Max-Dohrn Strasse, 8-10, Berlin, 10589, Germany
| | - Luana Bontempo
- Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige, 38010, Italy
| | - Federica Camin
- Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige, 38010, Italy.,Center Agriculture Food Environment (C3A), University of Trento, via Mach 1, San Michele all'Adige, Tennessee, 38010, Italy
| |
Collapse
|