1
|
Najeeb MI, Ahmad MD, Anjum AA, Maqbool A, Ali MA, Nawaz M, Ali T, Manzoor R. Distribution, screening and biochemical characterization of indigenous microalgae for bio-mass and bio-energy production potential from three districts of Pakistan. BRAZ J BIOL 2024; 84:e261698. [DOI: 10.1590/1519-6984.261698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Trend of biofuel production from microalgal triacylglycerols is enhancing, because this substrate is a good sustainable and advantageous alternative to oil and gas fuel. In the present study, indigenous micro algal isolates were screened from water (n=30) and soil (n=30) samples collected from three districts of Punjab, Pakistan to evaluate their biofuel production potential. The samples were inoculated on BG – 11 agar medium plates by incubating at room temperature of 25°C providing 1000 lux for 16h light cycle followed by 8h of dark cycle for 15 d. Water samples were found to be rich in microalgae and 65.33% microalgae (49 isolates) were isolated from Faisalabad district. On the basis of microscopic morphology microalgal isolates (n=180) were selected and subjected to lipid detection by Nile red staining assay. Nile red positive isolates (n=23) were processed for biochemical (lipid, protein and carbohydrates) characterization. AIN63 isolate showed higher lipids (17.4%) content as detected by micro vanillin assay. Algal isolate AIN128 showed best protein contents (42.91%) detected by Bradford assay and AIN172 isolate showed higher carbohydrate contents (73.83%) as detected by anthrone assay. The selected algal isolates were also analyzed by Fourier transform infrared (FTIR) spectroscopy for confirmation of carbohydrate, protein and lipid analysis. These indigenous algae have the potential for in-vitro biofuel production from agricultural waste.
Collapse
Affiliation(s)
- M. I. Najeeb
- University of Veterinary and Animal Sciences, Pakistan
| | - M.-D. Ahmad
- University of Veterinary and Animal Sciences, Pakistan
| | - A. A. Anjum
- University of Veterinary and Animal Sciences, Pakistan
| | - A. Maqbool
- University of Veterinary and Animal Sciences, Pakistan
| | - M. A. Ali
- University of Veterinary and Animal Sciences, Pakistan
| | - M. Nawaz
- University of Veterinary and Animal Sciences, Pakistan
| | - T. Ali
- University of Veterinary and Animal Sciences, Pakistan
| | - R. Manzoor
- University of Veterinary and Animal Sciences, Pakistan
| |
Collapse
|
2
|
Yang Y, Ge S, Pan Y, Qian W, Wang S, Zhang J, Zhuang LL. Screening of microalgae species and evaluation of algal-lipid stimulation strategies for biodiesel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159281. [PMID: 36216060 DOI: 10.1016/j.scitotenv.2022.159281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Microalgae is considered an alternative source for biodiesel production producing renewable, sustainable and carbon-neutral energy. Microalgae property changes among species, which determines the efficiency of biodiesel production. Besides the lipid content evaluation, multi-principles (including high lipid productivity, high biomass yield, pollution resistance and desired fatty acid, etc.) for superior oil-producing species screening was proposed in this review and three microalgae species (Chlorella vulgaris, Scenedesmus obliquus and Mychonastes afer) with high bio-lipid producing prospect were screened out based on big data digging and analysis. The multilateral strategies for algal-lipid stimulating were also compared, among which, nutrient restriction, temperature control, heterotrophy and chemicals addition showed high potential in enhancing lipid accumulation; while electromagnetic field showed little effect. Interestingly, it was found that the lipid accumulation was more sensitive to nitrogen (N)-limitation other than phosphorus (P). Nutrient restriction, salinity stress etc. enhanced lipid accumulation by creating a stressed environment. Hence, optimum conditions (e.g. N:15-35 mg/L and P:4-16 mg/L) should be set to balance the lipid accumulation and biomass growth, and further guarantee the algal-lipid productivity. Otherwise, two-step cultivation could be applied during all the stressed stimulation. Different from lab study, effectiveness, operability and economy should be all considered for stimulation strategy selection. Nutrient restriction, temperature control and heterotrophy were highly feasible after the multidimensional evaluation.
Collapse
Affiliation(s)
- Yanan Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuhan Ge
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Yitong Pan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shengnan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Uncovering New Diversity of Photosynthetic Microorganisms from the Mediterranean Region. Microorganisms 2022; 10:microorganisms10081571. [PMID: 36013989 PMCID: PMC9416340 DOI: 10.3390/microorganisms10081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
In the large and morphologically diverse phylum of Chlorophyta, new taxa are discovered every year and their phylogenetic relationships are reconstructed by the incorporation of molecular phylogenetic methods into traditional taxonomy. Herein, we aim to contribute to the photosynthetic microorganisms’ diversity knowledge in the Mediterranean area, a relatively unexplored ecoregion with high diversity. Based on a polyphasic approach, 18 Chlorophyta isolates were investigated and characterized. Morphological characteristics and ultrastructure, the phylogeny based on 18S rRNA gene (small subunit ribosomal RNA), 18S–28S internal transcribed spacer (ITS region), and the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit region (rbcL gene), support establishing four new genera (Nomia, Ava, Akraea, Lilaea) and five new species (Spongiosarcinopsis limneus, N. picochloropsia, Av. limnothalassea, Ak. chliaropsychia, and L. pamvotia) belonging to orders Sphaeropleales, Chlorellales, and Chlamydomonadales. For some of them, this is the first report of their occurrence in specific aquatic environments.
Collapse
|
4
|
Nishshanka GKSH, Anthonio RADP, Nimarshana PHV, Ariyadasa TU, Chang JS. Marine microalgae as sustainable feedstock for multi-product biorefineries. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Grubišić M, Šantek B, Zorić Z, Čošić Z, Vrana I, Gašparović B, Čož-Rakovac R, Ivančić Šantek M. Bioprospecting of Microalgae Isolated from the Adriatic Sea: Characterization of Biomass, Pigment, Lipid and Fatty Acid Composition, and Antioxidant and Antimicrobial Activity. Molecules 2022; 27:molecules27041248. [PMID: 35209036 PMCID: PMC8875609 DOI: 10.3390/molecules27041248] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Marine microalgae and cyanobacteria are sources of diverse bioactive compounds with potential biotechnological applications in food, feed, nutraceutical, pharmaceutical, cosmetic and biofuel industries. In this study, five microalgae, Nitzschia sp. S5, Nanofrustulum shiloi D1, Picochlorum sp. D3, Tetraselmis sp. Z3 and Tetraselmis sp. C6, and the cyanobacterium Euhalothece sp. C1 were isolated from the Adriatic Sea and characterized regarding their growth kinetics, biomass composition and specific products content (fatty acids, pigments, antioxidants, neutral and polar lipids). The strain Picochlorum sp. D3, showing the highest specific growth rate (0.009 h−1), had biomass productivity of 33.98 ± 0.02 mg L−1 day−1. Proteins were the most abundant macromolecule in the biomass (32.83–57.94%, g g−1). Nanofrustulum shiloi D1 contained significant amounts of neutral lipids (68.36%), while the biomass of Picochlorum sp. D3, Tetraselmis sp. Z3, Tetraselmis sp. C6 and Euhalothece sp. C1 was rich in glycolipids and phospholipids (75%). The lipids of all studied microalgae predominantly contained unsaturated fatty acids. Carotenoids were the most abundant pigments with the highest content of lutein and neoxanthin in representatives of Chlorophyta and fucoxanthin in strains belonging to the Bacillariophyta. All microalgal extracts showed antioxidant activity and antimicrobial activity against Gram-negative E. coli and S. typhimurium and Gram-positive S. aureus.
Collapse
Affiliation(s)
- Marina Grubišić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Božidar Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Zrinka Čošić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Ivna Vrana
- Laboratory for Marine and Atmospheric Biogeochemistry, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.V.); (B.G.)
| | - Blaženka Gašparović
- Laboratory for Marine and Atmospheric Biogeochemistry, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.V.); (B.G.)
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Mirela Ivančić Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
- Correspondence:
| |
Collapse
|
6
|
Fernandez-Valenzuela S, Chávez-Ruvalcaba F, Beltran-Rocha JC, San Claudio PM, Reyna-Martínez R. Isolation and Culturing Axenic Microalgae: Mini–Review. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microalgae have several applications in nutraceuticals, pharmaceuticals, cosmetics, biofuel production, and bioremediation, among other fields. Isolation and purification are extremely important for obtaining axenic cultures of microalgae from different environments and crucial for their biotechnological applications, but it is not an easy task. In view of the above, it is fundamental to know the classical and advanced techniques and examples of how scientists from around the globe have applied such methods to isolate several genera and the impact of each step on successful algal purification. This review provides a brief and simple explanation of the methodology for sampling, growth, obtention of unialgal, and posterior axenic culture, which will facilitate the development of novel microalgae-related discoveries and applications for new researchers.
Collapse
|