1
|
Hnizil O, Baidani A, Khlila I, Nsarellah N, Laamari A, Amamou A. Integrating NDVI, SPAD, and Canopy Temperature for Strategic Nitrogen and Seeding Rate Management to Enhance Yield, Quality, and Sustainability in Wheat Cultivation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1574. [PMID: 38891382 PMCID: PMC11174591 DOI: 10.3390/plants13111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
This study explores the interplay between nitrogen doses and seeding rates on wheat yield, biomass, and protein content. Utilizing tools such as the Normalized Difference Vegetation Index (NDVI), Soil Plant Analysis Development (SPAD) measurements, and canopy temperature (CT), we conducted experiments over five growing seasons. The treatments included three nitrogen levels (0, 60, 120 kg/ha) and three seeding rates (300, 400, 500 seeds/m2) in a split-plot design with 90 plots and two replications. Our results show that an intermediate nitrogen dose (60 kg/ha) combined with a moderate seed rate (400 seeds/m2) enhances wheat yield by 22.95%. Reduced nitrogen levels increased protein content, demonstrating wheat's adaptive mechanisms under nitrogen constraints. NDVI analysis highlighted significant growth during the tillering phase with high nitrogen, emphasizing early-stage nutrient management. SPAD measurements showed that early nitrogen applications boost chlorophyll content, essential for vigorous early growth, while CT data indicate that optimal nitrogen and seed rates can effectively modulate plant stress responses. As crops mature, the predictive capacity of NDVI declines, indicating the need for adjusted nitrogen strategies. Collectively, these findings advocate for refined management of nitrogen and seeding rates, integrating NDVI, SPAD, and CT assessments to enhance yields and promote sustainable agricultural practices while minimizing environmental impacts.
Collapse
Affiliation(s)
- Oussama Hnizil
- Research Unit of Plant Breeding and Genetic Resources Conservation, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, P.O. Box 589, Settat 26000, Morocco; (I.K.); (N.N.)
- Laboratory of Agrifood and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, P.O. Box 577, Settat 26000, Morocco;
| | - Aziz Baidani
- Laboratory of Agrifood and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, P.O. Box 577, Settat 26000, Morocco;
| | - Ilham Khlila
- Research Unit of Plant Breeding and Genetic Resources Conservation, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, P.O. Box 589, Settat 26000, Morocco; (I.K.); (N.N.)
- Laboratory of Agrifood and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, P.O. Box 577, Settat 26000, Morocco;
| | - Nasserelhaq Nsarellah
- Research Unit of Plant Breeding and Genetic Resources Conservation, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, P.O. Box 589, Settat 26000, Morocco; (I.K.); (N.N.)
| | - Abdelali Laamari
- Dryland Research Center, National Institute of Agricultural Research, P.O. Box 589, Settat 26000, Morocco;
| | - Ali Amamou
- Research Unit of Plant Breeding and Genetic Resources Conservation, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, P.O. Box 589, Settat 26000, Morocco; (I.K.); (N.N.)
| |
Collapse
|
2
|
Mefleh M, Omri G, Limongelli R, Minervini F, Santamaria M, Faccia M. Enhancing nutritional and sensory properties of plant-based beverages: a study on chickpea and Kamut® flours fermentation using Lactococcus lactis. Front Nutr 2024; 11:1269154. [PMID: 38328482 PMCID: PMC10847596 DOI: 10.3389/fnut.2024.1269154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
The study aimed to set up a protocol for the production of a clean-label plant-based beverage (PBB), obtained by mixing chickpeas and Kamut® flours and using a commercial Lactococcus lactis (LL) as fermentation starter, and to characterize it, from nutritional, microbiological, textural, shelf-life, and sensory points of view. The effect of using the starter was evaluated comparing the LL-PBB with a spontaneously fermented beverage (CTRL-PBB). Both PBBs were high in proteins (3.89/100 g) and could be considered as sources of fiber (2.06/100 g). Notably, L. lactis fermentation enhanced the phosphorus (478 vs. 331 mg/kg) and calcium (165 vs. 117 mg/kg) concentrations while lowering the raffinose content (5.51 vs. 5.08 g/100 g) compared to spontaneous fermentation. Cell density of lactic acid bacteria increased by ca. two log cycle during fermentation of LL-PBB, whereas undesirable microbial groups were not detected. Furthermore, L. lactis significantly improved the beverage's viscosity (0.473 vs. 0.231 Pa s), at least for 10 days, and lightness. To assess market potential, we conducted a consumer test, presenting the LL-PBB in "plain" and "sweet" (chocolate paste-added) variants. The "sweet" LL-PBB demonstrated a higher acceptability score than its "plain" counterpart, with 88 and 78% of participants expressing acceptability and a strong purchase intent, respectively. This positive consumer response positions the sweet LL-PBB as a valuable, appealing alternative to traditional flavored yogurts, highlighting its potential in the growing plant-based food market.
Collapse
Affiliation(s)
| | | | | | - Fabio Minervini
- Department of Soil, Plant, and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | | |
Collapse
|
3
|
Tateo F, Bononi M, Castorina G, Colecchia SA, De Benedetti S, Consonni G, Geuna F. Whole-genome resequencing-based characterization of a durum wheat landrace showing similarity to 'Senatore Cappelli'. PLoS One 2023; 18:e0291430. [PMID: 37733684 PMCID: PMC10513328 DOI: 10.1371/journal.pone.0291430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Durum wheat (Triticum turgidum spp. durum) is a major cereal adopted since antiquity to feed humans. Due to its use, dating back several millennia, this species features a wide genetic diversity and landraces are considered important repositories of gene pools which constitute invaluable tools for breeders. The aim of this work is to provide a first characterization of a wheat landrace, referred to as 'TB2018', that was collected in the Apulia region (Southern Italy). 'TB2018' revealed, through visual inspection, characters reminiscent of the traditional variety 'Senatore Cappelli', while exhibiting a distinctive trait, i.e., reduced stature. Indeed, the comparison with a set of Italian durum wheat cultivars conducted in this study, in which 24 CPVO plant descriptors were adopted, placed the 'TB2018' landrace in proximity to the 'Senatore Cappelli' cultivar. In addition, the close similarity between the two genotypes was confirmed by the analysis of the seed protein pattern. A relative reduction was detected for 'TB2018' root elongation in the early stages of plant growth. The 'TB2018' genome sequence, obtained through low-coverage resequencing and comparison to the reference 'Svevo' cultivar is also reported in this study, followed by a genome-wide comparison against 259 durum wheat accessions that placed 'TB2018' close to the 'Cappelli' reference. Hundreds of genes putatively affected by variants that possess Gene Ontology descriptors were detected, among which some were shown to be putatively linked to the morphological traits that distinguish 'TB2018' from 'Senatore Cappelli', Overall, this study poses the basis for a possible exploitation of 'TB2018' per se in cultivation or as a source of alternative alleles in the breeding of traditional cultivars. This work also presents a genomic methodology that exploits the information contained in a low-depth, whole-genome sequence to derive genotypic data useful for cross-platform (chip data) comparisons.
Collapse
Affiliation(s)
- Fernando Tateo
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
| | - Monica Bononi
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
| | - Giulia Castorina
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
| | - Salvatore Antonio Colecchia
- Council for Agricultural Research and Economics, Research Center for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Stefano De Benedetti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Gabriella Consonni
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
| | - Filippo Geuna
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
| |
Collapse
|
4
|
Mefleh M, Motzo R, Boukid F, Giunta F. Clipping Effect on the Grain Nitrogen and Protein Fractions of Ancient and Old Wheats Grown in a Mediterranean Environment. Foods 2023; 12:2582. [PMID: 37444319 DOI: 10.3390/foods12132582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
This study is the first to assess the effects of clipping, cultivar, season, and their interactions on the protein composition of six old and ancient wheat cultivars (n = 6). For this, nitrogen content, the proportion of wheat protein fractions, and the molecular weight distribution of the extractable and unextractable glutenin polymers were investigated as a function of cultivar and clipping in two consecutive seasons. The relationships between genotypic variation in grain nitrogen and protein fraction content under clipping and non-clipping conditions were also assessed. Clipping delayed and shortened the grain filling period of all of the cultivars. The protein composition of some cultivars behaved differently to clipping due to differences in the environmental conditions of S1 (exceptional dry season) and S2 (rainy season). In S1, clipping decreased the ratio of gliadins over glutenins (GLI/GLU) (<1) of Cappelli and Giovanni Paolo, while in S2, clipping improved the GLI/GLU of Giovanni Paolo, Monlis, and Norberto. The unextractable polymeric proteins were not affected by clipping. Khorasan was shown to be indifferent to clipping in S1 and S2. These results suggest that it is possible to have ancient/old wheats suitable for a dual-purpose system, in different climatic conditions, while maintaining good grain quality traits. The increased market demand for ancient and old wheats presents an economic opportunity for farmers who adopt the dual-purpose technique to cultivate these resilient crops again and increase their profit margins and revenues.
Collapse
Affiliation(s)
- Marina Mefleh
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/a, 07100 Sassari, Italy
| | - Rosella Motzo
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/a, 07100 Sassari, Italy
| | - Fatma Boukid
- ClonBio Group Ltd., 6 Fitzwilliam Pl, D02 XE61 Dublin, Ireland
| | - Francesco Giunta
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/a, 07100 Sassari, Italy
| |
Collapse
|
5
|
Comparative Characterization of Grain Protein Content and Composition by Chromatography-Based Separation Methods (SE-HPLC and RP-HPLC) of Ten Wheat Varieties Grown in Different Agro-Ecological Zones of Algeria. SEPARATIONS 2022. [DOI: 10.3390/separations9120443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To characterize and compare the protein quality of ten durum wheat genotypes grown under three cropping modalities in Algeria (subhumid in Algiers, subhumid-semiarid in Constantine, and semiarid in Sétif), the protein profile of their kernels was performed by High-Performance Liquid Chromatography (SE-HPLC and RP-HPLC). The “variety” factor has a major impact, mainly on the insoluble fraction (Fi), on the gliadin/glutenin ratio, on the large and small glutenin aggregates (F1 and F2, respectively), and on ω-gliadins and high molecular weight albumins (F3). Conversely, the total protein content and the albumin-globulin fraction (F5) depend mainly on the environment. The α- β- and γ-gliadins (F4) are equally dependent on variety and environment. The subhumid-semiarid agroecological conditions of Constantine (SH-SA) favored an important accumulation of proteins (14.1%), particularly by an increased synthesis of omega gliadins and high-molecular-weight glutenin subunits (HMW-GS), compared to those of Algiers (SH) and Sétif (SA). For these latter environments, metabolic-type proteins are predominant, reflected in a higher F5 fraction (p < 0.05) (albumin and globulin), and significantly more alpha-beta and gamma gliadins. The use of chromatographic analyses to characterize wheat genotypes remains a reliable tool for breeding and variety promotion programs and can provide a better understanding of the ecophysiology of cereal crops.
Collapse
|
6
|
Sheng K, Xu L, Wang M, Lei H, Duan A. The end-use quality of wheat can be enhanced by optimal water management without incurring yield loss. FRONTIERS IN PLANT SCIENCE 2022; 13:1030763. [PMID: 36438148 PMCID: PMC9684672 DOI: 10.3389/fpls.2022.1030763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In China, water-saving irrigation is playing important roles in ensuring food security, and improving wheat quality. A barrel experiment was conducted with three winter wheat (Triticum aestivum L.) genotypes and two irrigation pattens to examine the effects of regulated deficit irrigation (RDI) on wheat grain yield, water-use efficiency (WUE), and grain quality. In order to accurately control the soil water content, wheat was planted in the iron barrels set under a rainproof shelter, and the soil water content in the iron barrel was controlled by gravity method. The mechanisms whereby water management influences the end-use functional properties of wheat grain were also investigated. The results revealed that RDI improved the end-use functional properties of wheat and WUE, without significant yield loss (less than 3%). Moderate water deficit (60% to 65% field capacity) before jointing and during the late grain-filling stage combined with a slight water deficit (65% to 70% field capacity) from jointing to booting increased grain quality and WUE. The observed non-significant reduction in wheat yield associated with RDI may be attributed to higher rate of photosynthesis during the early stage of grain development and higher rate of transfer of carbohydrates from vegetative organs to grains during the later stage. By triggering an earlier rapid transfer of nitrogen deposited in vegetative organs, RDI enhances grain nitrogen content, which in turn could enhance dough elasticity, given the positive correlation between grain nitrogen content and dough midline peak value. Our results also indicate that the effects of RDI on grain quality are genotype dependent. Therefore, the grain end-use quality of some specific wheat genotypes may be enhanced without incurring yield loss by an optimal water management.
Collapse
Affiliation(s)
- Kun Sheng
- School of Hydraulic Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China
| | - Lina Xu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingxia Wang
- School of Hydraulic Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China
| | - Heng Lei
- School of Hydraulic Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China
| | - Aiwang Duan
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| |
Collapse
|
7
|
Suitability of Improved and Ancient Italian Wheat for Bread-Making: A Holistic Approach. Life (Basel) 2022; 12:life12101613. [PMID: 36295048 PMCID: PMC9605622 DOI: 10.3390/life12101613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ancient and old wheat grains are gaining interest as a genetic reservoir to develop improved Italian genotypes with peculiar features. In this light, the aim of this study was to assess the baking performance of two improved einkorn (Monlis and Norberto) and two improved emmer (Padre Pio and Giovanni Paolo) genotypes in comparison with two Italian landraces (Garfagnana and Cappelli) and Khorasan. This set was evaluated following a holistic approach considering the flour, dough, and bread properties. The results showed that the flour properties, dough rheology, pasting, and fermentation parameters, as well as the bread properties, significantly differed among the studied genotypes. Cappelli produced the bread with the best quality, i.e., the highest volume and lowest firmness. Despite having the same pedigrees, Giovanni Paolo and Padre Pio resulted in significantly different technological properties. Giovanni Paolo flour showed the highest protein content and provided a dough with a high gas production capacity, resulting in the bread having a similar firmness to Cappelli. Padre Pio flour provided bread having a similar volume to Cappelli but a high firmness similar to Khorasan and Garfagnana. The einkorn genotypes, Monlis and Norberto, showed poor fermentation properties and high gelatinization viscosity that resulted in bread with poor quality. Alternatively, they could be more suitable for making non-fermented flatbreads. Our results showed that the improved wheat showed a high versatility of features, which offers bakers a flexible material to make a genotype of bread types.
Collapse
|
8
|
De Santis MA, Soccio M, Laus MN, Flagella Z. Influence of Drought and Salt Stress on Durum Wheat Grain Quality and Composition: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2599. [PMID: 34961071 PMCID: PMC8708103 DOI: 10.3390/plants10122599] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 05/09/2023]
Abstract
Durum wheat is a staple crop for the Mediterranean diet because of its adaptability to environmental pressure and for its large use in cereal-based food products, such as pasta and bread, as a source of calories and proteins. Durum wheat whole grains are also highly valued for their peculiar amount of dietary fiber and minerals, as well as bioactive compounds of particular interest for their putative health-beneficial properties, including polyphenols, carotenoids, tocopherols, tocotrienols, and phytosterols. In Mediterranean environments, durum wheat is mostly grown under rainfed conditions, where the crop often experiences environmental stresses, especially water deficit and soil salinity that may induce a hyperosmotic stress. In particular, changes in C and N accumulation due to these abiotic conditions, during grain filling, can influence starch and storage protein amount and composition in durum wheat caryopsis, thus influencing yield and quality traits. Recent advancements regarding the influence of water deficit and salinity stress on durum wheat are critically discussed. In particular, a focus on stress-induced changes in (a) grain protein content and composition in relation to technological and health quality; (b) starch and dietary fiber accumulation and composition; (c) phytochemical composition; (d) health-related grain micronutrient accumulation, such as Fe and Zn.
Collapse
Affiliation(s)
- Michele Andrea De Santis
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.S.); (M.N.L.)
| | | | | | - Zina Flagella
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.S.); (M.N.L.)
| |
Collapse
|