1
|
Chiappim W, Kodaira FVDP, Castro GFSD, Silva DMD, Tavares TF, Almeida ACDPL, Leal BHS, Quade A, Koga-Ito CY, Kostov KG. Proposing an Affordable Plasma Device for Polymer Surface Modification and Microbial Inactivation. Molecules 2024; 29:4270. [PMID: 39275117 PMCID: PMC11397143 DOI: 10.3390/molecules29174270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
This study proposes an affordable plasma device that utilizes a parallel-plate dielectric barrier discharge geometry with a metallic mesh electrode, featuring a straightforward 3D-printed design. Powered by a high-voltage supply adapted from a cosmetic plasma device, it operates on atmospheric air, eliminating the need for gas flux. Surface modification of polyethylene treated with this device was characterized and showed that the elemental composition after 15 min of plasma treatment decreased the amount of C to ~80 at% due to the insertion of O (~15 at%). Tested against Candida albicans and Staphylococcus aureus, the device achieved a reduction of over 99% in microbial load with exposure times ranging from 1 to 10 min. Simultaneously, the Vero cell viability remained consistently high, namely between 91% and 96% across exposure times. These results highlight this device's potential for the surface modification of materials and various infection-related applications, boasting affordability and facilitating effective antimicrobial interventions.
Collapse
Affiliation(s)
- William Chiappim
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Felipe Vicente de Paula Kodaira
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Gisele Fátima Soares de Castro
- Department of Environment Engineering and Sciences Applied to Oral Health Graduate Program, São José dos Campos Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil
| | - Diego Morais da Silva
- Department of Environment Engineering and Sciences Applied to Oral Health Graduate Program, São José dos Campos Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil
- Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), UMR 7344, CNRS/Université d'Orléans, 45067 Orléans, France
| | - Thayna Fernandes Tavares
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Ana Carla de Paula Leite Almeida
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Bruno Henrique Silva Leal
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Antje Quade
- Leibniz Institute for Plasma Science and Technology-INP, 17489 Greifswald, Germany
| | - Cristiane Yumi Koga-Ito
- Department of Environment Engineering and Sciences Applied to Oral Health Graduate Program, São José dos Campos Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil
| | - Konstantin Georgiev Kostov
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| |
Collapse
|
2
|
Roy PK, Roy A, Jeon EB, DeWitt CAM, Park JW, Park SY. Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products. Compr Rev Food Sci Food Saf 2024; 23:e13410. [PMID: 39030812 DOI: 10.1111/1541-4337.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Anamika Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | | | - Jae W Park
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| |
Collapse
|
3
|
Sun Y, Liang M, Zhao F, Su L. Research Progress on Biological Accumulation, Detection and Inactivation Technologies of Norovirus in Oysters. Foods 2023; 12:3891. [PMID: 37959010 PMCID: PMC10649127 DOI: 10.3390/foods12213891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Noroviruses (NoVs) are major foodborne pathogens that cause acute gastroenteritis. Oysters are significant carriers of this pathogen, and disease transmission from the consumption of NoVs-infected oysters occurs worldwide. The review discusses the mechanism of NoVs bioaccumulation in oysters, particularly the binding of histo-blood group antigen-like (HBGA-like) molecules to NoVs in oysters. The review explores the factors that influence NoVs bioaccumulation in oysters, including temperature, precipitation and water contamination. The review also discusses the detection methods of NoVs in live oysters and analyzes the inactivation effects of high hydrostatic pressure, irradiation treatment and plasma treatment on NoVs. These non-thermal processing treatments can remove NoVs efficiently while retaining the original flavor of oysters. However, further research is needed to reduce the cost of these technologies to achieve large-scale commercial applications. The review aims to provide novel insights to reduce the bioaccumulation of NoVs in oysters and serve as a reference for the development of new, rapid and effective methods for detecting and inactivating NoVs in live oysters.
Collapse
Affiliation(s)
- Yiqiang Sun
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
4
|
Kim SH, Park SH, Min SG, Park SY. Inhibitory effects of non-thermal atmospheric plasma on Yersinia enterocolitica and Staphylococcus aureus in the Korean traditional non-fermented kimchi " Geotjeori". Heliyon 2023; 9:e19575. [PMID: 37809382 PMCID: PMC10558839 DOI: 10.1016/j.heliyon.2023.e19575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023] Open
Abstract
Food-borne bacteria have frequently been detected in kimchi, a representative and traditional fermented ethnic food of Korea. This study investigated the effect of atmospheric dielectric barrier discharge (DBD) plasma treatment (1.1 kV, 43 kHz, N2: 1.5 m/s, 5-60 min) on reduction of Yersinia enterocolitica and Staphylococcus aureus and on quality parameters in Geotjeroi, a non-fermented kimchi. A decrease of 0.12/0.09, 0.19/0.19, 0.34/0.45, 0.64/0.72, and 1.13/1.12 log10 CFU/g was observed by 5, 10, 20, 30, and 60 min of DBD plasma, respectively. D-value of 52.83 and 51.95 min was determined for Y. enterocolitica (R2 = 0.99) and S. aureus (R2 = 0.98) using the first order kinetics model. The quality parameters (pH, Brix, and hardness) were not significantly different (P > 0.05) between treated and untreated Geotjeori. Moreover, a decrease of >1 log10 CFU/g, for both bacteria was observed without any change in the quality of Geotjeori. These findings imply that DBD plasma treatment enhances Geotjeori safety and protects product from microbial risk.
Collapse
Affiliation(s)
- So Hee Kim
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Sung-Hee Park
- Practical Technology Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Sung Gi Min
- Practical Technology Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| |
Collapse
|
5
|
Roy PK, Jeon EB, Kim JY, Park SY. Application of High-Pressure Processing (or High Hydrostatic Pressure) for the Inactivation of Human Norovirus in Korean Traditionally Preserved Raw Crab. Viruses 2023; 15:1599. [PMID: 37515285 PMCID: PMC10386741 DOI: 10.3390/v15071599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Human norovirus (HuNoV) is a common cause of outbreaks linked to food. In this study, the effectiveness of a non-thermal method known as high-pressure processing (HPP) on the viable reduction of an HuNoV GII.4 strain on raw crabs was evaluated at three different pressures (200, 400, and 600 MPa). HuNoV viability in raw crabs was investigated by using propidium monoazide/sarkosyl (PMA) as a nucleic acid intercalating dye prior to performing a real-time reverse transcription-polymerase chain reaction (RT-qPCR). The effect of the HPP exposure on pH, sensory, and Hunter colors were also assessed. HuNoV was reduced in raw crabs compared with control to HPP (0.15-1.91 log) in non-PMA and (0.67-2.23 log) in PMA. HuNoV genomic titer reduction was <2 log copy number/µL) when HPP was treated for 5 min without PMA pretreatment, but it was reduced to >2 log copy number/µL after PMA. The pH and Hunter colors of the untreated and HPP-treated raw crabs were significantly different (p < 0.05), but sensory attributes were not significant. The findings indicate that PMA/RT-qPCR could be used to detect HuNoV infectivity without altering the quality of raw crabs after a 5 min treatment with HPP. Therefore, HuNoV GII.4 could be reduced up to 2.23 log in food at a commercially acceptable pressure duration of 600 MPa for 5 min.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Bi Jeon
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Ji Yoon Kim
- West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 22383, Republic of Korea
| | - Shin Young Park
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| |
Collapse
|
6
|
Song MG, Kim SH, Jeon EB, Ha KS, Cho SR, Jung YJ, Choi EH, Lim JS, Choi J, Park SY. Inactivation of Human Norovirus GII.4 and Vibrio parahaemolyticus in the Sea Squirt ( Halocynthia roretzi) by Floating Electrode-Dielectric Barrier Discharge Plasma. Foods 2023; 12:foods12051030. [PMID: 36900547 PMCID: PMC10001302 DOI: 10.3390/foods12051030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Human norovirus (HNoV) GII.4 and Vibrio parahaemolyticus may be found in sea squirts. Antimicrobial effects of floating electrode-dielectric barrier discharge (FE-DBD) plasma (5-75 min, N2 1.5 m/s, 1.1 kV, 43 kHz) treatment were examined. HNoV GII.4 decreased by 0.11-1.29 log copy/μL with increasing duration of treatment time, and further by 0.34 log copy/μL when propidium monoazide (PMA) treatment was added to distinguish infectious viruses. The decimal reduction time (D1) of non-PMA and PMA-treated HNoV GII.4 by first-order kinetics were 61.7 (R2 = 0.97) and 58.8 (R2 = 0.92) min, respectively. V. parahaemolyticus decreased by 0.16-1.5 log CFU/g as treatment duration increased. The D1 for V. parahaemolyticus by first-order kinetics was 65.36 (R2 = 0.90) min. Volatile basic nitrogen showed no significant difference from the control until 15 min of FE-DBD plasma treatment, increasing after 30 min. The pH did not differ significantly from the control by 45-60 min, and Hunter color in "L" (lightness), "a" (redness), and "b" (yellowness) values reduced significantly as treatment duration increased. Textures appeared to be individual differences but were not changed by treatment. Therefore, this study suggests that FE-DBD plasma has the potential to serve as a new antimicrobial to foster safer consumption of raw sea squirts.
Collapse
Affiliation(s)
- Min Gyu Song
- Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - So Hee Kim
- Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Kwang Soo Ha
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Sung Rae Cho
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Yeoun Joong Jung
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Republic of Korea
| | - Jun Sup Lim
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Republic of Korea
| | - Jinsung Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Republic of Korea
| | - Shin Young Park
- Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Correspondence:
| |
Collapse
|
7
|
Paulsen P, Csadek I, Bauer A, Bak KH, Weidinger P, Schwaiger K, Nowotny N, Walsh J, Martines E, Smulders FJM. Treatment of Fresh Meat, Fish and Products Thereof with Cold Atmospheric Plasma to Inactivate Microbial Pathogens and Extend Shelf Life. Foods 2022; 11:3865. [PMID: 36496672 PMCID: PMC9740106 DOI: 10.3390/foods11233865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Assuring the safety of muscle foods and seafood is based on prerequisites and specific measures targeted against defined hazards. This concept is augmented by 'interventions', which are chemical or physical treatments, not genuinely part of the production process, but rather implemented in the framework of a safety assurance system. The present paper focuses on 'Cold Atmospheric pressure Plasma' (CAP) as an emerging non-thermal intervention for microbial decontamination. Over the past decade, a vast number of studies have explored the antimicrobial potential of different CAP systems against a plethora of different foodborne microorganisms. This contribution aims at providing a comprehensive reference and appraisal of the latest literature in the area, with a specific focus on the use of CAP for the treatment of fresh meat, fish and associated products to inactivate microbial pathogens and extend shelf life. Aspects such as changes to organoleptic and nutritional value alongside other matrix effects are considered, so as to provide the reader with a clear insight into the advantages and disadvantages of CAP-based decontamination strategies.
Collapse
Affiliation(s)
- Peter Paulsen
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Isabella Csadek
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | | | - Kathrine H. Bak
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Pia Weidinger
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Karin Schwaiger
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - James Walsh
- Centre for Plasma Microbiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Emilio Martines
- Department of Physics “G. Occhialini”, University of Milano—Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Frans J. M. Smulders
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
8
|
Boonyawan D, Lamasai K, Umongno C, Rattanatabtimtong S, Yu L, Kuensaen C, Maitip J, Thana P. Surface dielectric barrier discharge plasma-treated pork cut parts: bactericidal efficacy and physiochemical characteristics. Heliyon 2022; 8:e10915. [PMID: 36247123 PMCID: PMC9561744 DOI: 10.1016/j.heliyon.2022.e10915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/09/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Maintaining agro-food product safety remains a significant challenge for satisfying local and global consumers in tropical countries. This issue has been growing due to new pathogen strains, low infectious doses, increased virulence, antibiotic resistance, cross-contamination or recontamination of foods, food-contact surfaces, and biocontamination of water within the food production chain. To respond to this situation, we studied the inactivation efficacy of surface dielectric barrier discharge (SDBD) plasma against pathogens on the surface of various pork cut parts, including the loin, hip, belly, liver, and intestine. The SDBD plasma was operated at 0.30 W/cm2 in ambient air, with a gap of 5.0 mm between the plasma generator and the sample surface. Up to 96% germicidal efficiency against surface pathogens were observed, showing after 1 min of SDBD plasma exposure. Visualization of reactive species deposition on the treated surface using KI-starch agar gel reagent indicated a non-uniform distribution of the SDBD-generated reactive species on the treated surface. Following the indirect plasma treatment by the SDBD reactor, the overall color of pork cut samples after plasma treatment was significantly different compared with before. However, the surface morphology and structural characterization of the treated pork cut samples were not significantly altered, and residual nitrites and nitrates were lower than the restriction level for safe consumption. The SDBD reactor should be developed further to produce a uniform distribution of reactive species on the meat surface for the improvement of the decontamination effect without undesirable effects on meat quality parameters.
Collapse
Affiliation(s)
- D. Boonyawan
- Plasma and Beam Physics Research Facility, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - K. Lamasai
- Doctor of Philosophy Program in Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - C. Umongno
- Plasma and Beam Physics Research Facility, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - S. Rattanatabtimtong
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - L.D. Yu
- Plasma and Beam Physics Research Facility, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - C. Kuensaen
- International College of Digital Innovation, Chiang Mai University, Chiang Mai 50200, Thailand
| | - J. Maitip
- Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand
| | - P. Thana
- Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand,Corresponding author.
| |
Collapse
|
9
|
Velebit B, Milojević L, Baltić T, Grković N, Gummalla S, Velebit M, Škoko I, Mojsova S, Putnik P. Efficacy of cold atmospheric plasma for inactivation of viruses on raspberries. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Kulawik P, Rathod NB, Ozogul Y, Ozogul F, Zhang W. Recent developments in the use of cold plasma, high hydrostatic pressure, and pulsed electric fields on microorganisms and viruses in seafood. Crit Rev Food Sci Nutr 2022; 63:9716-9730. [PMID: 35603708 DOI: 10.1080/10408398.2022.2077298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-thermal processing methods, such as cold plasma (CP), high pressure processing (HPP) and pulsed electric fields (PEF), have been proposed for natural and fresh-like foods to inactivate microorganisms at nearly-ambient or moderate temperature. Since natural, safe, and healthy foods with longer shelf-life are increasingly demanded, these requests are challenging to fulfill by using current thermal processing technologies. Thus, novel preservation technologies based on non-thermal processing methods are required. The aim of this article is to provide recent developments in maintaining seafood safety via CP, HHP, and PEF technologies, as well as their mechanisms of action regarding contamination with food-borne microorganisms. Their application to control parasites, spores and the possibility to eradicate the hazard of SARS-CoV-2 transmission through seafood products are also discussed. CP, HHP, and PEF have been applied to inactivate food-borne microorganisms in the seafood industry. However, the drawbacks for each emerging technology have also been reported. To ensure safety and maintain quality of seafood products, the combination of these processing techniques with natural antimicrobial agents or existing thermal methods may be more applicable in the case of the seafood industry. Further studies are required to examine the effects of these methods on viruses, parasites, and SARS-CoV-2 in seafood.
Collapse
Affiliation(s)
- Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Nikheel Bhojraj Rathod
- Department of Post-Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management, Raigad, Maharashtra, India
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Song MG, Jeon EB, Kim JY, Park SY. Effects of sodium hypochlorite on the potential infectivity of human norovirus
GII
.4 using propidium monoazide with
RT‐qPCR
and quality assessments in Manila clams (
Ruditapes philippinarum
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Gyu Song
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science and Technology Gyeongsang National University Tongyeong Republic of Korea
| | - Eun Bi Jeon
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science and Technology Gyeongsang National University Tongyeong Republic of Korea
| | - Ji Yoon Kim
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science and Technology Gyeongsang National University Tongyeong Republic of Korea
| | - Shin Young Park
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science and Technology Gyeongsang National University Tongyeong Republic of Korea
| |
Collapse
|
12
|
Guan B, Wang F, Jiang H, Zhou M, Lin H. Preparation of Mesoporous Silica Nanosphere-Doped Color-Sensitive Materials and Application in Monitoring the TVB-N of Oysters. Foods 2022; 11:foods11060817. [PMID: 35327241 PMCID: PMC8947737 DOI: 10.3390/foods11060817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
In this work, a new colorimetric sensor based on mesoporous silica nanosphere-modified color-sensitive materials was established for application in monitoring the total volatile basic nitrogen (TVB-N) of oysters. Firstly, mesoporous silica nanospheres (MSNs) were synthesized based on the improved Stober method, then the color-sensitive materials were doped with MSNs. The “before image” and the “after image” of the colorimetric senor array, which was composed of nanocolorimetric-sensitive materials by a charge-coupled device (CCD) camera were then collected. The different values of the before and after image were analyzed by principal component analysis (PCA). Moreover, the error back-propagation artificial neural network (BP-ANN) was used to quantitatively predict the TVB-N values of the oysters. The correlation coefficient of the colorimetric sensor array after being doped with MSNs was greatly improved; the Rc and Rp of BP-ANN were 0.9971 and 0.9628, respectively when the principal components (PCs) were 10. Finally, a paired sample t-test was used to verify the accuracy and applicability of the BP-ANN model. The result shows that the colorimetric-sensitive materials doped with MSNs could improve the sensitivity of the colorimetric sensor array, and this research provides a fast and accurate method to detect the TVB-N values in oysters.
Collapse
Affiliation(s)
- Binbin Guan
- Nantong Food and Drug Supervision and Inspection Center, Nantong 226400, China; (B.G.); (M.Z.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (F.W.); (H.J.)
| | - Fuyun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (F.W.); (H.J.)
| | - Hao Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (F.W.); (H.J.)
| | - Mi Zhou
- Nantong Food and Drug Supervision and Inspection Center, Nantong 226400, China; (B.G.); (M.Z.)
| | - Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (F.W.); (H.J.)
- Correspondence:
| |
Collapse
|
13
|
Guan B, Kang W, Jiang H, Zhou M, Lin H. Freshness Identification of Oysters Based on Colorimetric Sensor Array Combined with Image Processing and Visible Near-Infrared Spectroscopy. SENSORS 2022; 22:s22020683. [PMID: 35062644 PMCID: PMC8781135 DOI: 10.3390/s22020683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022]
Abstract
Volatile organic compounds (VOCs) could be used as an indicator of the freshness of oysters. However, traditional characterization methods for VOCs have some disadvantages, such as having a high instrument cost, cumbersome pretreatment, and being time consuming. In this work, a fast and non-destructive method based on colorimetric sensor array (CSA) and visible near-infrared spectroscopy (VNIRS) was established to identify the freshness of oysters. Firstly, four color-sensitive dyes, which were sensitive to VOCs of oysters, were selected, and they were printed on a silica gel plate to obtain a CSA. Secondly, a charge coupled device (CCD) camera was used to obtain the “before” and “after” image of CSA. Thirdly, VNIS system obtained the reflected spectrum data of the CSA, which can not only obtain the color change information before and after the reaction of the CSA with the VOCs of oysters, but also reflect the changes in the internal structure of color-sensitive materials after the reaction of oysters’ VOCs. The pattern recognition results of VNIS data showed that the fresh oysters and stale oysters could be separated directly from the principal component analysis (PCA) score plot, and linear discriminant analysis (LDA) model based on variables selection methods could obtain a good performance for the freshness detection of oysters, and the recognition rate of the calibration set was 100%, while the recognition rate of the prediction set was 97.22%. The result demonstrated that the CSA, combined with VNIRS, showed great potential for VOCS measurement, and this research result provided a fast and nondestructive identification method for the freshness identification of oysters.
Collapse
Affiliation(s)
- Binbin Guan
- Nantong Food and Drug Supervision and Inspection Center, Nantong 226400, China; (B.G.); (M.Z.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.K.); (H.J.)
| | - Wencui Kang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.K.); (H.J.)
| | - Hao Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.K.); (H.J.)
| | - Mi Zhou
- Nantong Food and Drug Supervision and Inspection Center, Nantong 226400, China; (B.G.); (M.Z.)
| | - Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.K.); (H.J.)
- Correspondence:
| |
Collapse
|
14
|
Application of dielectric barrier discharge plasma for the reduction of non-pathogenic Escherichia coli and E. coli O157:H7 and the quality stability of fresh oysters (Crassostrea gigas). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Csadek I, Paulsen P, Weidinger P, Bak KH, Bauer S, Pilz B, Nowotny N, Smulders FJM. Nitrogen Accumulation in Oyster ( Crassostrea gigas) Slurry Exposed to Virucidal Cold Atmospheric Plasma Treatment. Life (Basel) 2021; 11:life11121333. [PMID: 34947864 PMCID: PMC8709485 DOI: 10.3390/life11121333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022] Open
Abstract
Viral contamination of edible bivalves is a major food safety issue. We studied the virucidal effect of a cold atmospheric plasma (CAP) source on two virologically different surrogate viruses [a double-stranded DNA virus (Equid alphaherpesvirus 1, EHV-1), and a single-stranded RNA virus (Bovine coronavirus, BCoV)] suspended in Dulbecco’s Modified Eagle’s Medium (DMEM). A 15 min exposure effectuated a statistically significant immediate reduction in intact BCoV viruses by 2.8 (ozone-dominated plasma, “low power”) or 2.3 log cycles (nitrate-dominated, “high power”) of the initial viral load. The immediate effect of CAP on EHV-1 was less pronounced, with “low power” CAP yielding a 1.4 and “high power” a 1.0 log reduction. We observed a decline in glucose contents in DMEM, which was most probably caused by a Maillard reaction with the amino acids in DMEM. With respect to the application of the virucidal CAP treatment in oyster production, we investigated whether salt water could be sanitized. CAP treatment entailed a significant decline in pH, below the limits acceptable for holding oysters. In oyster slurry (a surrogate for live oysters), CAP exposure resulted in an increase in total nitrogen, and, to a lower extent, in nitrate and nitrite; this was most probably caused by absorption of nitrate from the plasma gas cloud. We could not observe a change in colour, indicative for binding of NOx to haemocyanin, although this would be a reasonable assumption. Further studies are necessary to explore in which form this additional nitrogen is deposited in oyster flesh.
Collapse
Affiliation(s)
- Isabella Csadek
- Unit of Food Hygiene and Technology, Food Technology and Veterinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Veterinärpl. 1, 1210 Vienna, Austria; (P.P.); (K.H.B.); (S.B.); (B.P.); (F.J.M.S.)
- Correspondence: ; Tel.: +43-1250-77-3325
| | - Peter Paulsen
- Unit of Food Hygiene and Technology, Food Technology and Veterinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Veterinärpl. 1, 1210 Vienna, Austria; (P.P.); (K.H.B.); (S.B.); (B.P.); (F.J.M.S.)
| | - Pia Weidinger
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Veterinärpl. 1, 1210 Vienna, Austria; (P.W.); (N.N.)
| | - Kathrine H. Bak
- Unit of Food Hygiene and Technology, Food Technology and Veterinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Veterinärpl. 1, 1210 Vienna, Austria; (P.P.); (K.H.B.); (S.B.); (B.P.); (F.J.M.S.)
| | - Susanne Bauer
- Unit of Food Hygiene and Technology, Food Technology and Veterinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Veterinärpl. 1, 1210 Vienna, Austria; (P.P.); (K.H.B.); (S.B.); (B.P.); (F.J.M.S.)
| | - Brigitte Pilz
- Unit of Food Hygiene and Technology, Food Technology and Veterinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Veterinärpl. 1, 1210 Vienna, Austria; (P.P.); (K.H.B.); (S.B.); (B.P.); (F.J.M.S.)
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Veterinärpl. 1, 1210 Vienna, Austria; (P.W.); (N.N.)
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Frans J. M. Smulders
- Unit of Food Hygiene and Technology, Food Technology and Veterinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Veterinärpl. 1, 1210 Vienna, Austria; (P.P.); (K.H.B.); (S.B.); (B.P.); (F.J.M.S.)
| |
Collapse
|
16
|
Kim JY, Jeon EB, Song MG, Ha KS, Jeong SH, Jung YJ, Park SY. Combination of ultrasonic waves and dielectric barrier discharge plasma for the viable reduction in human norovirus while retaining the quality of raw sea squirt. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ji Yoon Kim
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science Gyeongsang National University Tongyeong Republic of Korea
| | - Eun Bi Jeon
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science Gyeongsang National University Tongyeong Republic of Korea
| | - Min Gyu Song
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science Gyeongsang National University Tongyeong Republic of Korea
| | - Kwang Soo Ha
- Southeast Sea Fisheries Research Institute National Institute of Fisheries Science Tongyeong Republic of Korea
| | - Sang Hyeon Jeong
- Southeast Sea Fisheries Research Institute National Institute of Fisheries Science Tongyeong Republic of Korea
| | - Yeoun Joong Jung
- Food Safety and Processing Research Division National Institute of Fisheries Science Busan Republic of Korea
| | - Shin Young Park
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science Gyeongsang National University Tongyeong Republic of Korea
| |
Collapse
|
17
|
Savini F, Giacometti F, Tomasello F, Pollesel M, Piva S, Serraino A, De Cesare A. Assessment of the Impact on Human Health of the Presence of Norovirus in Bivalve Molluscs: What Data Do We Miss? Foods 2021; 10:2444. [PMID: 34681492 PMCID: PMC8535557 DOI: 10.3390/foods10102444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023] Open
Abstract
In the latest One Health ECDC EFSA technical report, Norovirus in fish and fishery products have been listed as the agent/food pair causing the highest number of strong-evidence outbreaks in the EU in 2019. This review aims to identify data gaps that must be filled in order to increase knowledge on Norovirus in bivalve molluscs, perform a risk assessment and rank the key mitigation strategies for this biological hazard, which is relevant to public health. Virologic determinations are not included in any of the food safety and process hygiene microbiologic criteria reflected in the current European regulations. In addition, the Escherichia coli-based indices of acceptable faecal contamination for primary production, as well as the food safety criteria, do not appear sufficient to indicate the extent of Norovirus contamination. The qualitative risk assessment data collected in this review suggests that bivalve molluscs present a high risk to human health for Norovirus only when consumed raw or when insufficiently cooked. On the contrary, the risk can be considered negligible when they are cooked at a high temperature, while information is still scarce for non-thermal treatments.
Collapse
Affiliation(s)
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (F.S.); (F.T.); (M.P.); (S.P.); (A.S.); (A.D.C.)
| | | | | | | | | | | |
Collapse
|
18
|
Aman Mohammadi M, Ahangari H, Zabihzadeh Khajavi M, Yousefi M, Scholtz V, Hosseini SM. Inactivation of viruses using nonthermal plasma in viral suspensions and foodstuff: A short review of recent studies. J Food Saf 2021. [DOI: 10.1111/jfs.12919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Zabihzadeh Khajavi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Yousefi
- Department of Food Science and Technology, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| | - Vladimír Scholtz
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
19
|
Yang M, Zhao F, Tong L, Wang S, Zhou D. Contamination, bioaccumulation mechanism, detection, and control of human norovirus in bivalve shellfish: A review. Crit Rev Food Sci Nutr 2021; 62:8972-8985. [PMID: 34184956 DOI: 10.1080/10408398.2021.1937510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Human norovirus (HuNoV) is a major foodborne pathogen that causes acute viral gastroenteritis, and bivalve shellfish are one of the main carriers of HuNoV transmission. A comprehensive understanding of bivalve shellfish-related HuNoV outbreaks focusing on contamination factors, bioaccumulation mechanisms, and pre- and post-harvest interventions is essential for the development of effective strategies to prevent contamination of shellfish. This review comprehensively surveys the current knowledge on global contamination and non-thermal treatment of HuNoV in bivalve shellfish. HuNoV contamination in bivalve shellfish is significantly related to the season and water. While evaluating the water quality of shellfish-inhabited waters is a key intervention, the development of non-heat treatment technology to effectively inactivate the HuNoV in bivalve shellfish while maintaining the flavor and nutrition of the shellfish is also an important direction for further research. Additionally, this review explores the bioaccumulation mechanisms of HuNoV in bivalve shellfish, especially the mechanism underlying the binding of histo-blood group antigen-like molecules and HuNoV. The detection methods for infectious HuNoV are also discussed. The establishment of effective methods to rapidly detect infectious HuNoV and development of biological components to inactivate or prevent HuNoV contamination in shellfish also need to be studied further.
Collapse
Affiliation(s)
- Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Lihui Tong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Abstract
Nonthermal atmospheric pressure biocompatible plasma (NBP), alternatively called bio-cold plasma, is a partially ionized gas that consists of charged particles, neutral atoms and molecules, photons, an electric field, and heat. Recently, nonthermal plasma-based technology has been applied to bioscience, medicine, agriculture, food processing, and safety. Various plasma device configurations and electrode layouts has fast-tracked plasma applications in the treatment of biological and material surfaces. The NBP action mechanism may be related to the synergy of plasma constituents, such as ultraviolet radiation or a reactive species. Recently, plasma has been used in the inactivation of viruses and resistant microbes, such as fungal cells, bacteria, spores, and biofilms made by microbes. It has also been used to heal wounds, coagulate blood, degrade pollutants, functionalize material surfaces, kill cancers, and for dental applications. This review provides an outline of NBP devices and their applications in bioscience and medicine. We also discuss the role of plasma-activated liquids in biological applications, such as cancer treatments and agriculture. The individual adaptation of plasma to meet specific medical requirements necessitates real-time monitoring of both the plasma performance and the target that is treated and will provide a new paradigm of plasma-based therapeutic clinical systems.
Collapse
Affiliation(s)
- Eun H. Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Han S. Uhm
- Canode # 702, 136-11 Tojeong-ro, Mapo-gu, Seoul, 04081 Republic of Korea
| | - Nagendra K. Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|