1
|
Cheng DY, Tai WC, Liao YC. Photocurable Foam for Three-Dimensional-Printed Porous Structures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45589-45597. [PMID: 39155694 PMCID: PMC11367572 DOI: 10.1021/acsami.4c10858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
In this research, a foam three-dimensional (3D) printing method using digital light processing (DLP) technology was developed to fabricate 3D-printed porous structures. To address the challenges in preparing DLP precursor foam fluid, we designed a specialized foaming device. This device enables the precursor solution to be blended with air, resulting in a stable foam precursor with an adjustable air/liquid fraction and suitable fluidity, crucially enhancing the gas-liquid contact time for the printing process. By manipulation of fluid flow rates, cycle counts, and gas/liquid ratios, one can easily prepare uniform foams with precise control over the pore size and porosity. To avoid significant volume reduction during ultraviolet (UV) curing, nanoparticle fillers were introduced into the network to prevent collapse of the foam structure. Furthermore, the inclusion of an UV absorber enhanced the quality of the printing process by addressing the limitations associated with particle scattering and reflection. The DLP process can readily fabricate intricate structures, featuring a planar resolution below 30 μm and a printing accuracy of less than 1%. Several examples were also demonstrated to highlight the advantages of this technology and its ability to directly print custom foam structures, thereby saving time and material resources.
Collapse
Affiliation(s)
- Der-Yun Cheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chien Tai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Albrecht FB, Ahlfeld T, Klatt A, Heine S, Gelinsky M, Kluger PJ. Biofabrication's Contribution to the Evolution of Cultured Meat. Adv Healthc Mater 2024; 13:e2304058. [PMID: 38339837 PMCID: PMC11468272 DOI: 10.1002/adhm.202304058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cultured Meat (CM) is a growing field in cellular agriculture, driven by the environmental impact of conventional meat production, which contributes to climate change and occupies ≈70% of arable land. As demand for meat alternatives rises, research in this area expands. CM production relies on tissue engineering techniques, where a limited number of animal cells are cultured in vitro and processed to create meat-like tissue comprising muscle and adipose components. Currently, CM is primarily produced on a small scale in pilot facilities. Producing a large cell mass based on suitable cell sources and bioreactors remains challenging. Advanced manufacturing methods and innovative materials are required to subsequently process this cell mass into CM products on a large scale. Consequently, CM is closely linked with biofabrication, a suite of technologies for precisely arranging cellular aggregates and cell-material composites to construct specific structures, often using robotics. This review provides insights into contemporary biomedical biofabrication technologies, focusing on significant advancements in muscle and adipose tissue biofabrication for CM production. Novel materials for biofabricating CM are also discussed, emphasizing their edibility and incorporation of healthful components. Finally, initial studies on biofabricated CM are examined, addressing current limitations and future challenges for large-scale production.
Collapse
Affiliation(s)
| | - Tilman Ahlfeld
- Technische Universität DresdenCentre for Translational BoneJoint and Soft Tissue Research01307DresdenGermany
| | - Annemarie Klatt
- Reutlingen UniversityReutlingen Research Institute72762ReutlingenGermany
| | - Simon Heine
- Reutlingen UniversityReutlingen Research Institute72762ReutlingenGermany
| | - Michael Gelinsky
- Technische Universität DresdenCentre for Translational BoneJoint and Soft Tissue Research01307DresdenGermany
| | | |
Collapse
|
3
|
Davern JW, Hipwood L, Bray LJ, Meinert C, Klein TJ. Addition of Laponite to gelatin methacryloyl bioinks improves the rheological properties and printability to create mechanically tailorable cell culture matrices. APL Bioeng 2024; 8:016101. [PMID: 38204454 PMCID: PMC10776181 DOI: 10.1063/5.0166206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Extrusion-based bioprinting has gained widespread popularity in biofabrication due to its ability to assemble cells and biomaterials in precise patterns and form tissue-like constructs. To achieve this, bioinks must have rheological properties suitable for printing while maintaining cytocompatibility. However, many commonly used biomaterials do not meet the rheological requirements and therefore require modification for bioprinting applications. This study demonstrates the incorporation of Laponite-RD (LPN) into gelatin methacryloyl (GelMA) to produce highly customizable bioinks with desired rheological and mechanical properties for extrusion-based bioprinting. Bioink formulations were based on GelMA (5%-15% w/v) and LPN (0%-4% w/v), and a comprehensive rheological design was applied to evaluate key rheological properties necessary for extrusion-based bioprinting. The results showed that GelMA bioinks with LPN (1%-4% w/v) exhibited pronounced shear thinning and viscoelastic behavior, as well as improved thermal stability. Furthermore, a concentration window of 1%-2% (w/v) LPN to 5%-15% GelMA demonstrated enhanced rheological properties and printability required for extrusion-based bioprinting. Construct mechanical properties were highly tunable by varying polymer concentration and photocrosslinking parameters, with Young's moduli ranging from ∼0.2 to 75 kPa. Interestingly, at higher Laponite concentrations, GelMA cross-linking was inhibited, resulting in softer hydrogels. High viability of MCF-7 breast cancer cells was maintained in both free-swelling droplets and printed hydrogels, and metabolically active spheroids formed over 7 days of culture in all conditions. In summary, the addition of 1%-2% (w/v) LPN to gelatin-based bioinks significantly enhanced rheological properties and retained cell viability and proliferation, suggesting its suitability for extrusion-based bioprinting.
Collapse
|
4
|
Paul AA, Aladese AD, Marks RS. Additive Manufacturing Applications in Biosensors Technologies. BIOSENSORS 2024; 14:60. [PMID: 38391979 PMCID: PMC10887193 DOI: 10.3390/bios14020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
Three-dimensional (3D) printing technology, also known as additive manufacturing (AM), has emerged as an attractive state-of-the-art tool for precisely fabricating functional materials with complex geometries, championing several advancements in tissue engineering, regenerative medicine, and therapeutics. However, this technology has an untapped potential for biotechnological applications, such as sensor and biosensor development. By exploring these avenues, the scope of 3D printing technology can be expanded and pave the way for groundbreaking innovations in the biotechnology field. Indeed, new printing materials and printers would offer new possibilities for seamlessly incorporating biological functionalities within the growing 3D scaffolds. Herein, we review the additive manufacturing applications in biosensor technologies with a particular emphasis on extrusion-based 3D printing modalities. We highlight the application of natural, synthetic, and composite biomaterials as 3D-printed soft hydrogels. Emphasis is placed on the approach by which the sensing molecules are introduced during the fabrication process. Finally, future perspectives are provided.
Collapse
Affiliation(s)
- Abraham Abbey Paul
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel;
| | - Adedamola D. Aladese
- Department of Physics and Material Science, University of Memphis, Memphis, TN 38152, USA;
| | - Robert S. Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel;
- Ilse Katz Centre for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
5
|
Jergitsch M, Alluè-Mengual Z, Perez RA, Mateos-Timoneda MA. A systematic approach to improve printability and cell viability of methylcellulose-based bioinks. Int J Biol Macromol 2023; 253:127461. [PMID: 37852401 DOI: 10.1016/j.ijbiomac.2023.127461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Printability in 3D extrusion bioprinting encompasses extrudability, filament formation, and shape fidelity. Rheological properties can predict the shape fidelity of printed hydrogels. In particular, tan(δ), the ratio between loss (G'') and storage (G') modulus (G''/G'), is a powerful indicator of printability. This study explores the effect of different salt, sucrose, and MC concentrations on tan(δ), and therefore the printability of methylcellulose (MC) hydrogels. Salt and sucrose increased G', lowering tan(δ) and enabling printing of scaffolds with high shape fidelity. Conversely, MC concentration increased G'' and G', having a lesser effect on tan(δ). Shape fidelity of three formulations with similar G' but varying tan(δ) values were compared. Higher tan(δ) led to reduced height, while lower tan(δ) improved shape fidelity. Cell viability increased when reducing MC content, extrusion rate, and nozzle gauge. Higher MC concentration (G' > 1.5 kPa) increased the influence of needle size and extrusion rate on cell viability. Hydrogels with G' < 1 kPa could be extruded at high rates with small nozzles, minimally affecting cell viability. This work shows a direct relationship between tan(δ) and printability of MC-based hydrogels. Lowering the complex modulus of hydrogels, mitigates extrusion stress, thus improving cell survival.
Collapse
Affiliation(s)
- Maximilian Jergitsch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain; Department of Basic Sciences, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya, JosepTrueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Zoe Alluè-Mengual
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain; Department of Basic Sciences, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya, JosepTrueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Roman A Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain; Department of Basic Sciences, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya, JosepTrueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Miguel A Mateos-Timoneda
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain; Department of Basic Sciences, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya, JosepTrueta, 08195 Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|
6
|
Windisch J, Reinhardt O, Duin S, Schütz K, Rodriguez NJN, Liu S, Lode A, Gelinsky M. Bioinks for Space Missions: The Influence of Long-Term Storage of Alginate-Methylcellulose-Based Bioinks on Printability as well as Cell Viability and Function. Adv Healthc Mater 2023; 12:e2300436. [PMID: 37125819 PMCID: PMC11468998 DOI: 10.1002/adhm.202300436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/14/2023] [Indexed: 05/02/2023]
Abstract
Bioprinting is considered a key technology for future space missions and is currently being established on the International Space Station (ISS). With the aim to perform bioink production as a critical and resource-consuming preparatory step already on Earth and transport a bioink cartridge "ready to use" to the ISS, the storability of bioinks is investigated. Hydrogel blends based on alginate and methylcellulose are laden with either green microalgae of the species Chlorella vulgaris or with different human cell lines including immortilized human mesenchymal stem cells, SaOS-2 and HepG2, as well as with primary human dental pulp stem cells. The bioinks are filled into printing cartridges and stored at 4°C for up to four weeks. Printability of the bioinks is maintained after storage. Viability and function of the cells embedded in constructs bioprinted from the stored bioinks are investigated during subsequent cultivation: The microalgae survive the storage period very well and show no loss of growth and functionality, however a significant decrease is visible for human cells, varying between the different cell types. The study demonstrates that storage of bioinks is in principle possible and is a promising starting point for future research, making complex printing processes more effective and reproducible.
Collapse
Affiliation(s)
- Johannes Windisch
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Olena Reinhardt
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Sarah Duin
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Nuria Juliana Novoa Rodriguez
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Suihong Liu
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| |
Collapse
|
7
|
Banda Sánchez C, Cubo Mateo N, Saldaña L, Valdivieso A, Earl J, González Gómez I, Rodríguez-Lorenzo LM. Selection and Optimization of a Bioink Based on PANC-1- Plasma/Alginate/Methylcellulose for Pancreatic Tumour Modelling. Polymers (Basel) 2023; 15:3196. [PMID: 37571089 PMCID: PMC10421301 DOI: 10.3390/polym15153196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
3D bioprinting involves using bioinks that combine biological and synthetic materials. The selection of the most appropriate cell-material combination for a specific application is complex, and there is a lack of consensus on the optimal conditions required. Plasma-loaded alginate and alginate/methylcellulose (Alg/MC) inks were chosen to study their viscoelastic behaviour, degree of recovery, gelation kinetics, and cell survival after printing. Selected inks showed a shear thinning behavior from shear rates as low as 0.2 s-1, and the ink composed of 3% w/v SA and 9% w/v MC was the only one showing a successful stacking and 96% recovery capacity. A 0.5 × 106 PANC-1 cell-laden bioink was extruded with an Inkredible 3D printer (Cellink) through a D = 410 μm tip conical nozzle into 6-well culture plates. Cylindrical constructs were printed and crosslinked with CaCl2. Bioinks suffered a 1.845 Pa maximum pressure at the tip that was not deleterious for cellular viability. Cell aggregates can be appreciated for the cut total length observed in confocal microscopy, indicating a good proliferation rate at different heights of the construct, and suggesting the viability of the selected bioink PANC-1/P-Alg3/MC9 for building up three-dimensional bioprinted pancreatic tumor constructs.
Collapse
Affiliation(s)
| | - Nieves Cubo Mateo
- Nebrija Research Group ARIES, Higher Polytechnic School, Antonio de Nebrija University, 28015 Madrid, Spain
- Institute for Physical and Information Technologies (ITEFI-CSIC), Sensors and Ultrasonic Systems, 28006 Madrid, Spain
| | - Laura Saldaña
- IdiPAZ, Hospital Universitario La Paz, 28046 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Alba Valdivieso
- Institute for Physical and Information Technologies (ITEFI-CSIC), Sensors and Ultrasonic Systems, 28006 Madrid, Spain
| | - Julie Earl
- Ramón y Cajal Health Research Institute (IRYCIS), Molecular Epidemiology and Predictive Tumour Markers, 28034 Madrid, Spain
- Biomedical Research Network in Cancer (CIBERONC), 28034 Madrid, Spain
| | - Itziar González Gómez
- Institute for Physical and Information Technologies (ITEFI-CSIC), Sensors and Ultrasonic Systems, 28006 Madrid, Spain
| | | |
Collapse
|
8
|
Strauß S, Grijalva Garces D, Hubbuch J. Analytics in Extrusion-Based Bioprinting: Standardized Methods Improving Quantification and Comparability of the Performance of Bioinks. Polymers (Basel) 2023; 15:polym15081829. [PMID: 37111976 PMCID: PMC10144221 DOI: 10.3390/polym15081829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Three-dimensional bioprinting and especially extrusion-based printing as a most frequently employed method in this field is constantly evolving as a discipline in regenerative medicine and tissue engineering. However, the lack of relevant standardized analytics does not yet allow an easy comparison and transfer of knowledge between laboratories regarding newly developed bioinks and printing processes. This work revolves around the establishment of a standardized method, which enables the comparability of printed structures by controlling for the extrusion rate based on the specific flow behavior of each bioink. Furthermore, printing performance was evaluated by image-processing tools to verify the printing accuracy for lines, circles, and angles. In addition, and complementary to the accuracy metrics, a dead/live staining of embedded cells was performed to investigate the effect of the process on cell viability. Two bioinks, based on alginate and gelatin methacryloyl, which differed in 1% (w/v) alginate content, were tested for printing performance. The automated image processing tool reduced the analytical time while increasing reproducibility and objectivity during the identification of printed objects. During evaluation of the processing effect of the mixing of cell viability, NIH 3T3 fibroblasts were stained and analyzed after the mixing procedure and after the extrusion process using a flow cytometer, which evaluated a high number of cells. It could be observed that the small increase in alginate content made little difference in the printing accuracy but had a considerable strong effect on cell viability after both processing steps.
Collapse
Affiliation(s)
- Svenja Strauß
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - David Grijalva Garces
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
9
|
Gretzinger S, Schmieg B, Guthausen G, Hubbuch J. Virtual Reality as Tool for Bioprinting Quality Inspection: A Proof of Principle. Front Bioeng Biotechnol 2022; 10:895842. [PMID: 35757809 PMCID: PMC9218671 DOI: 10.3389/fbioe.2022.895842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
As virtual reality (VR) has drastically evolved over the past few years, the field of applications of VR flourished way beyond the gaming industry. While commercial VR solutions might be available, there is a need to develop a workflow for specific applications. Bioprinting represents such an example. Here, complex 3D data is generated and needs to be visualized in the context of quality control. We demonstrate that the transfer to a commercially available VR software is possible by introducing an optimized workflow. In the present work, we developed a workflow for the visualization of the critical quality attribute (cQA) cell distribution in bioprinted (extrusion-based) samples in VR. The cQA cell distribution is directly influenced by the pre-processing step mixing of cell material in the bioink. Magnetic Resonance Imaging (MRI) was used as an analytical tool to generate spatially resolved 2.5 and 3D data of the bioprinted objects. A sample with poor quality in respect of the cQA cell distribution was identified as its inhomogeneous cell distribution could be displayed spatially resolved in VR. The described workflow facilitates the usage of VR as a tool for quality inspection in the field of bioprinting and represents a powerful tool for visualization of complex 3D MRI data.
Collapse
Affiliation(s)
- Sarah Gretzinger
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Barbara Schmieg
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gisela Guthausen
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Engler Bunte Institute Water Chemistry and Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
10
|
Quilez Lopez C, Cerdeira E, González-Rico J, De Aranda G, Lopez-Donaire ML, Jorcano Noval JL, Velasco Bayon D. Evaluation of different methodologies for primary human dermal fibroblast spheroid formation: automation through 3D Bioprinting technology. Biomed Mater 2022; 17. [PMID: 35724647 DOI: 10.1088/1748-605x/ac7a7f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
Cell spheroids have recently emerged as an effective tool to recapitulate native microenvironments of living organisms in an in vitro scenario, increasing the reliability of the results obtained and broadening their applications in regenerative medicine, cancer research, disease modeling and drug screening. In this study the generation of spheroids containing primary human dermal fibroblasts (dHFs) was approached using the two-widely employed methods: hanging-drop (HD) and U-shape low adhesion plate (LA-plate). Moreover, extrusion-based 3D bioprinting was introduced to achieve a standardized and scalable production of cell spheroids, decreasing considerably the possibilities of human error. This was ensured when U-shape LA-plates were used, showing an 85% formation efficiency, increasing up to a 98% when it was automatized using the 3D bioprinting technologies. However, sedimentation effect within the cartridge led to a reduction of 20% in size of the spheroid during the printing process. Hyaluronic acid (HA) was chosen as viscosity enhancer to supplement the bioink and overcome cell sedimentation within the cartridge due to the high viability values exhibited by the cells - around 80% - at the used conditions. Finally, ANCOVA analysis of spheroid size over time for different printing conditions stand out HA 0.4% (w/v) 60 kDa as the viscosity-improved bioink that exhibit the highest cell viability and spheroid formation percentages. Besides, not only did it ensure cell spheroid homogeneity over time, reducing cell sedimentation effects, but also wider spheroid diameters over time with less variability, outperforming significantly manual loading.
Collapse
Affiliation(s)
- Cristina Quilez Lopez
- University Carlos III of Madrid Department of Bioengineering and Aerospace Engineering, Avenida de la Universidad, 30, Leganés (Madrid), Leganes, 28911, SPAIN
| | - Enrique Cerdeira
- BIST Dolors Aleu Graduate Centre, Universitat Pompeu Fabra (UPF), Barcelona, Spain, Plaça de la Mercè, 10-12, 08002 Barcelona, Barcelona, 08002, SPAIN
| | - Jorge González-Rico
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid (UC3M), Avenida de la Universidad, 30, Leganés (Madrid), Leganes, Madrid, 28911, SPAIN
| | - Gonzalo De Aranda
- University Carlos III of Madrid Department of Bioengineering and Aerospace Engineering, Avenida de la Universidad 30, Leganés (Madrid), Leganes, 28911, SPAIN
| | - Maria Luisa Lopez-Donaire
- Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid - Campus de Getafe, Avenida de la Universidad 30, Getafe, Madrid, 28903, SPAIN
| | - Jose Luis Jorcano Noval
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Avenida de la Universidad, 30, Leganés (Madrid), Leganes, Madrid, 28911, SPAIN
| | - Diego Velasco Bayon
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Avenida de la Universidad, 30, Leganés (Madrid), Leganes, Madrid, 28911, SPAIN
| |
Collapse
|
11
|
Karakaya E, Bider F, Frank A, Teßmar J, Schöbel L, Forster L, Schrüfer S, Schmidt HW, Schubert DW, Blaeser A, Boccaccini AR, Detsch R. Targeted Printing of Cells: Evaluation of ADA-PEG Bioinks for Drop on Demand Approaches. Gels 2022; 8:gels8040206. [PMID: 35448107 PMCID: PMC9032277 DOI: 10.3390/gels8040206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
A novel approach, in the context of bioprinting, is the targeted printing of a defined number of cells at desired positions in predefined locations, which thereby opens up new perspectives for life science engineering. One major challenge in this application is to realize the targeted printing of cells onto a gel substrate with high cell survival rates in advanced bioinks. For this purpose, different alginate-dialdehyde—polyethylene glycol (ADA-PEG) inks with different PEG modifications and chain lengths (1–8 kDa) were characterized to evaluate their application as bioinks for drop on demand (DoD) printing. The biochemical properties of the inks, printing process, NIH/3T3 fibroblast cell distribution within a droplet and shear forces during printing were analyzed. Finally, different hydrogels were evaluated as a printing substrate. By analysing different PEG chain lengths with covalently crosslinked and non-crosslinked ADA-PEG inks, it was shown that the influence of Schiff’s bases on the viscosity of the corresponding materials is very low. Furthermore, it was shown that longer polymer chains resulted in less stable hydrogels, leading to fast degradation rates. Several bioinks highly exhibit biocompatibility, while the calculated nozzle shear stress increased from approx. 1.3 and 2.3 kPa. Moreover, we determined the number of cells for printed droplets depending on the initial cell concentration, which is crucially needed for targeted cell printing approaches.
Collapse
Affiliation(s)
- Emine Karakaya
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany; (E.K.); (F.B.); (L.S.); (A.R.B.)
| | - Faina Bider
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany; (E.K.); (F.B.); (L.S.); (A.R.B.)
| | - Andreas Frank
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany; (A.F.); (H.-W.S.)
| | - Jörg Teßmar
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (J.T.); (L.F.)
| | - Lisa Schöbel
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany; (E.K.); (F.B.); (L.S.); (A.R.B.)
| | - Leonard Forster
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (J.T.); (L.F.)
| | - Stefan Schrüfer
- Department of Materials Science and Engineering, Institute of Polymer Materials, University Erlangen-Nürnberg, Martenstraße 7, 91058 Erlangen, Germany; (S.S.); (D.W.S.)
| | - Hans-Werner Schmidt
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany; (A.F.); (H.-W.S.)
| | - Dirk Wolfram Schubert
- Department of Materials Science and Engineering, Institute of Polymer Materials, University Erlangen-Nürnberg, Martenstraße 7, 91058 Erlangen, Germany; (S.S.); (D.W.S.)
- Bavarian Polymer Institute, Key Lab Advanced Fiber Technology, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - Andreas Blaeser
- Department of Mechanical Engineering, BioMedical Printing Technology, Technical University of Darmstadt, Magdalenenstr. 2, 64289 Darmstadt, Germany;
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany; (E.K.); (F.B.); (L.S.); (A.R.B.)
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany; (E.K.); (F.B.); (L.S.); (A.R.B.)
- Correspondence: ; Tel.: +49-9131-85-69611
| |
Collapse
|
12
|
Addition of High Acyl Gellan Gum to Low Acyl Gellan Gum Enables the Blends 3D Bioprintable. Gels 2022; 8:gels8040199. [PMID: 35448100 PMCID: PMC9030627 DOI: 10.3390/gels8040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Long-term stability of gellan gum (GG) at physiological conditions is expected, as very low concentration of divalent ions are required for crosslinking, as compared to alginate—which is extensively used for tissue engineering (TE) applications. Hence, GG is proposed as an ideal candidate to substitute alginate for TE. Deacylated (low acyl; LA) GG forms brittle gels, thus only low concentrations were used for cell encapsulation, whereas acylated (high acyl; HA) GG forms weak/soft gels. 3D bioprinting using pure LAGG or HAGG is not possible owing to their rheological properties. Here, we report development and characterization of bioprintable blends of LAGG and HAGG. Increase in HAGG in the blends improved shear recovery and shape fidelity of printed scaffolds. Low volumetric swelling observed in cell culture conditions over 14 days indicates stability. Volumetric scaffolds were successfully printed and their mechanical properties were determined by uniaxial compressive testing. Mesenchymal stem cells bioprinted in blends of 3% LAGG and 3% HAGG survived the printing process showing >80% viability; a gradual decrease in cell numbers was observed over 21 days of culture. However, exploiting intrinsic advantages of 3D bioprinting, LAGG/HAGG blends open up numerous possibilities to improve and/or tailor various aspects required for TE.
Collapse
|
13
|
Wollschlaeger JO, Maatz R, Albrecht FB, Klatt A, Heine S, Blaeser A, Kluger PJ. Scaffolds for Cultured Meat on the Basis of Polysaccharide Hydrogels Enriched with Plant-Based Proteins. Gels 2022; 8:94. [PMID: 35200476 PMCID: PMC8871916 DOI: 10.3390/gels8020094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The world population is growing and alternative ways of satisfying the increasing demand for meat are being explored, such as using animal cells for the fabrication of cultured meat. Edible biomaterials are required as supporting structures. Hence, we chose agarose, gellan and a xanthan-locust bean gum blend (XLB) as support materials with pea and soy protein additives and analyzed them regarding material properties and biocompatibility. We successfully built stable hydrogels containing up to 1% pea or soy protein. Higher amounts of protein resulted in poor handling properties and unstable gels. The gelation temperature range for agarose and gellan blends is between 23-30 °C, but for XLB blends it is above 55 °C. A change in viscosity and a decrease in the swelling behavior was observed in the polysaccharide-protein gels compared to the pure polysaccharide gels. None of the leachates of the investigated materials had cytotoxic effects on the myoblast cell line C2C12. All polysaccharide-protein blends evaluated turned out as potential candidates for cultured meat. For cell-laden gels, the gellan blends were the most suitable in terms of processing and uniform distribution of cells, followed by agarose blends, whereas no stable cell-laden gels could be formed with XLB blends.
Collapse
Affiliation(s)
- Jannis O. Wollschlaeger
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Robin Maatz
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany; (R.M.); (A.B.)
| | - Franziska B. Albrecht
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Annemarie Klatt
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Simon Heine
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany; (R.M.); (A.B.)
- Centre for Synthetic Biology, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Petra J. Kluger
- School of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| |
Collapse
|