1
|
Broering MF, Oseliero Filho PL, Borges PP, da Silva LCC, Knirsch MC, Xavier LF, Scharf P, Sandri S, Stephano MA, de Oliveira FA, Sayed IM, Gamarra LF, Das S, Fantini MCA, Farsky SHP. Development of Ac2-26 Mesoporous Microparticle System as a Potential Therapeutic Agent for Inflammatory Bowel Diseases. Int J Nanomedicine 2024; 19:3537-3554. [PMID: 38638365 PMCID: PMC11024051 DOI: 10.2147/ijn.s451589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Inflammatory bowel diseases (IBDs) disrupt the intestinal epithelium, leading to severe chronic inflammation. Current therapies cause adverse effects and are expensive, invasive, and ineffective for most patients. Annexin A1 (AnxA1) is a pivotal endogenous anti-inflammatory and tissue repair protein in IBD. Nanostructured compounds loading AnxA1 or its active N-terminal mimetic peptides improve IBD symptomatology. Methods To further explore their potential as a therapeutic candidate, the AnxA1 N-terminal mimetic peptide Ac2-26 was incorporated into SBA-15 ordered mesoporous silica and covered with EL30D-55 to deliver it by oral treatment into the inflamed gut. Results The systems SBA-Ac2-26 developed measurements revealed self-assembled rod-shaped particles, likely on the external surface of SBA-15, and 88% of peptide incorporation. SBA-15 carried the peptide Ac2-26 into cultured Raw 264.7 macrophages and Caco-2 epithelial cells. Moreover, oral administration of Eudragit-SBA-15-Ac2-26 (200 μg; once a day; for 4 days) reduced colitis clinical symptoms, inflammation, and improved epithelium recovery in mice under dextran-sodium sulfate-induced colitis. Discussion The absorption of SBA-15 in gut epithelial cells is typically low; however, the permeable inflamed barrier can enable microparticles to cross, being phagocyted by macrophages. These findings suggest that Ac2-26 is successfully delivered and binds to its receptors in both epithelial and immune cells, aligning with the clinical results. Conclusion Our findings demonstrate a simple and cost-effective approach to delivering Ac2-26 orally into the inflamed gut, highlighting its potential as non-invasive IBD therapy.
Collapse
Affiliation(s)
- Milena Fronza Broering
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Pedro Leonidas Oseliero Filho
- Department of Applied Physics, Physics Institute, University of Sao Paulo, São Paulo, Brazil
- Materials Innovation Factory, University of Liverpool, Liverpool, MSY, UK
| | - Pâmela Pacassa Borges
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Marcos Camargo Knirsch
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luana Filippi Xavier
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marco Antonio Stephano
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernando Anselmo de Oliveira
- Instituto do Cérebro, Instituto Israelita de Ensino e Pesquisa, Sociedade Beneficente Israelita Brasileira Hospital Albert Einstein, São Paulo, SP, Brazil
| | - Ibrahim M Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Lionel Fernel Gamarra
- Instituto do Cérebro, Instituto Israelita de Ensino e Pesquisa, Sociedade Beneficente Israelita Brasileira Hospital Albert Einstein, São Paulo, SP, Brazil
| | - Soumita Das
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Márcia C A Fantini
- Department of Applied Physics, Physics Institute, University of Sao Paulo, São Paulo, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Narvaez LEM, Carrillo MP, Cardona-Jaramillo JEC, Vallejo BM, Ferreira LMDMC, Silva-Júnior JOC, Ribeiro-Costa RM. Novel Organogels from Mauritia flexuosa L.f and Caryodendron orinocense Karst.: A Topical Alternative. Pharmaceutics 2023; 15:2681. [PMID: 38140024 PMCID: PMC10747660 DOI: 10.3390/pharmaceutics15122681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 12/24/2023] Open
Abstract
Organogels have importance for topical applications because they can be used to deliver drugs in a controlled and prolonged fashion. These are materials consisting of a three-dimensional network of organic molecules dispersed in a solvent. Recent studies have demonstrated that the solvent could be replaced by oils from non-conventional biologic sources. There is a diversity of not-explored species in the Amazon that are promising sources of vegetable oils with a promising composition. This study developed an organogel with buriti (Mauritia flexuosa L.f) and cacay (Caryodendron orinocense Karst.) oils, using cetostearyl alcohol as an organogelator due to its compatibility, stability, security, affordability, and it is readily available. The oils were characterized, and the organogels were synthesized by studying their crystal evolution and oil-binding capacity. The microstructure was evaluated with polarized light microscopy, fractal dimension, FTIR spectroscopy, XRD, and thermal and rheological analyses. It was found that the critical gelation concentration was higher for cacay oil as it possessed a higher amount of polyunsaturated triacylglycerols. The crystals of the buriti organogel had a smaller lamellar shape, a greater surface area, and physical and thermal stability; although, it presented a slower crystal evolution due to the low number of minor compounds and a greater number of saturated triacylglycerols. The polar fraction of the organogelators as well as triacylglycerol and minor polar compounds are important in forming crystallization nuclei. The study showed that Amazonian oils in crystallization processes form microstructures with differentiating physicochemical properties.
Collapse
Affiliation(s)
- Luis Eduardo Mosquera Narvaez
- Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (J.O.C.S.-J.)
- Sinchi Amazon Research Institute, Bogotá 110311, Colombia; (M.P.C.); (J.E.C.C.-J.)
| | - Marcela P. Carrillo
- Sinchi Amazon Research Institute, Bogotá 110311, Colombia; (M.P.C.); (J.E.C.C.-J.)
| | | | | | | | | | - Roseane Maria Ribeiro-Costa
- Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (J.O.C.S.-J.)
| |
Collapse
|
3
|
Francavilla A, Corradini MG, Joye IJ. Bigels as Delivery Systems: Potential Uses and Applicability in Food. Gels 2023; 9:648. [PMID: 37623103 PMCID: PMC10453560 DOI: 10.3390/gels9080648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Bigels have been mainly applied in the pharmaceutical sector for the controlled release of drugs or therapeutics. However, these systems, with their intricate structures, hold great promise for wider application in food products. Besides their classical role as carrier and target delivery vehicles for molecules of interest, bigels may also be valuable tools for building complex food structures. In the context of reducing or even eliminating undesirable (but often highly functional) food components, current strategies often critically affect food structure and palatability. The production of solid fat systems that are trans-fat-free and have high levels of unsaturated fatty acids is one of the challenges the food industry currently faces. According to recent studies, bigels can be successfully used as ingredients for total or partial solid fat replacement in complex food matrices. This review aims to critically assess current research on bigels in food and pharmaceutical applications, discuss the role of bigel composition and production parameters on the characteristics of bigels and further expand the use of bigels as solid fat replacers and functional food ingredients. The hydrogel:oleogel ratio, selected gelators, inclusion of surfactants and encapsulation of molecules of interest, and process parameters (e.g., temperature, shear rate) during bigel production play a crucial role in the bigel's rheological and textural properties, microstructure, release characteristics, biocompatibility, and stability. Besides exploring the role of these parameters in bigel production, future research directions for bigels in a food context are explored.
Collapse
Affiliation(s)
- Alyssa Francavilla
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.F.); (M.G.C.)
| | - Maria G. Corradini
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.F.); (M.G.C.)
- Arrell Food Institute, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Iris J. Joye
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.F.); (M.G.C.)
| |
Collapse
|
4
|
Effect of Aqueous Extracts of Quercus resinosa on the Mechanical Behavior of Bigels. Sci Pharm 2022. [DOI: 10.3390/scipharm90040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Quercus resinosa leaves are rich in polyphenol compounds, however, they are unstable to several chemical and physical factors that limit their activity. Several methods have been developed to solve such problems, among which bigels can be mentioned and obtained using hydrogels and oleogels. The mechanical characterization of this type of materials is by using rheological methods. Although the use of these methods is well documented, the Carreau-Yasuda model has been little used to evaluate the effect of polyphenols on the mechanical behavior of bigels. Therefore, bigels were obtained from hydrogels (guar gum/xanthan gum, 0.5/0.5% w/v) and oleogels (sesame oil/sorbitan monostearate 10% w/w). Micrographs, linear viscoelasticity range, frequency sweep, and single shear tests were performed. The data were analyzed using ANOVA and Tukey test (p < 0.05); micrographs showed linear relationship between polyphenols concentration and droplet size. Liquid fraction of bigels showed a pseudoplastic behavior, while the parameters of Carreau-Yasuda model showed that the highest value of the complex viscosity at zero shear was at the lowest concentration of extract; the relaxation time presented the lowest value at higher concentrations of extracts. These results indicate that the presence of polyphenols modifyes the mechanical behavior of bigels.
Collapse
|