1
|
Mai X, Zhang X, Tang M, Zheng Y, Wang D, Xu W, Liu F, Sun Z. Preparation of carboxymethyl chitosan/double-formaldehyde cellulose based hydrogel loaded with ginger essential oil nanoemulsion for meat preservation. Food Sci Biotechnol 2024; 33:1359-1369. [PMID: 38585560 PMCID: PMC10991447 DOI: 10.1007/s10068-023-01437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 04/09/2024] Open
Abstract
An antibacterial nano-hydrogel (ginger essential oil nanoemulsion hydrogel, GEONH) based on Schiff base reaction was prepared using double-formaldehyde micro fibrillated cellulose (DAMFC) and carboxymethyl chitosan (CMCS) loaded with ginger essential oil nanoemulsion (GEON). It was found that when the mass ratio of DAMFC/CMCS/GEON was 1/9/270, the gel time, the water absorbency, gel strength, and morphology were the best. The results of X-ray diffraction and FT-IR confirmed that the aldehyde group on the DAMFC molecular chain formed a stable chemical crosslinking with the amino group on the CMCS molecular chain, resulting in a change in the crystal structure. GEONH showed excellent bactericidal activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Simultaneously, the prepared GEONH decreased the total viable count, Malondialdehyde, and total sulfhydryl content and improved the taste in the storage of boiled salted duck. Therefore, GEONH film is a promising fresh-keeping packaging for storing meat products. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01437-4.
Collapse
Affiliation(s)
- Xutao Mai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014 China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210097 China
| | - Xinxiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014 China
| | - Minmin Tang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014 China
| | - Yuhang Zheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014 China
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014 China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Nanjing, 210014 China
| | - Weimin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014 China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210097 China
| | - Fang Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014 China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Nanjing, 210014 China
| |
Collapse
|
2
|
Vila Nova BG, Silva LDS, Andrade MDS, de Santana AVS, da Silva LCT, Sá GC, Zafred IF, Moreira PHDA, Monteiro CA, da Silva LCN, Abreu AG. The essential oil of Melaleuca alternifolia incorporated into hydrogel induces antimicrobial and anti-inflammatory effects on infected wounds by Staphylococcus aureus. Biomed Pharmacother 2024; 173:116389. [PMID: 38461682 DOI: 10.1016/j.biopha.2024.116389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Staphylococcus aureus is one of the most common bacterial isolates found in wounds. Thus, innovative dressings, such as hydrogels, are interesting vehicles for incorporating bioactive compounds like those from Melaleuca alternifolia essential oil (MaEO). In this study, we evaluated the antimicrobial and anti-inflammatory potential of MaEO incorporated into an alginate and chitosan hydrogel for treating wounds infected by S. aureus. The hydrogel incorporated with MaEO 1% (HMa 1%) was homogeneous with a bright pale-yellow color and the characteristic smell of Melaleuca. The incorporation of MaEO 1% does not affect the stability of the hydrogel, which was stable up to 90 days of storage. The Scanning electron microscopy analysis revealed that hydrogels showed irregular surfaces and interconnected porous structures with accumulations of oil crystals distributed throughout the formulation. HMa 1% has a high moisture content (95.1%) and can absorb simulated wound fluid. Regarding the antimicrobial effects, HMa 1% reduced the growth of S. aureus ATCC 6538 in both in vitro conditions and in an ex vivo model of wounds using porcine skin. In addition, the dairy topical treatment of murine skin lesions with HMa 1% induced a significant reduction of the wound area, inflammation score, and bacterial load, as well as tissue re-epithelialization and modulation of inflammatory mediators. Therefore, hydrogel incorporated with MaEO 1% has excellent potential to be used in the pharmacotherapy of infected wounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Cristina Andrade Monteiro
- Laboratory of Research and Study in Microbiology, Federal Institute of Education, Science and Technology of the Maranhão (IFMA), São Luís, MA, Brazil
| | | | - Afonso Gomes Abreu
- Microbial Pathogenicity Laboratory, CEUMA University, São Luís, MA, Brazil.
| |
Collapse
|
3
|
Özakar E, Alparslan L, Adıgüzel MC, Torkay G, Baran A, Bal-Öztürk A, Sevinç-Özakar R. A Comprehensive Study on Peppermint Oil and Cinnamon Oil as Nanoemulsion: Preparation, Stability, Cytotoxicity, Antimicrobial, Antifungal, and Antioxidant Activity. Curr Drug Deliv 2024; 21:603-622. [PMID: 37309758 DOI: 10.2174/1567201820666230612123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Recent studies have shown that nanoemulsions prepared with essential oils have significant antimicrobial potential against multidrug-resistant pathogens due to increased chemical stability. Nanoemulsion also promotes controlled and sustained release, which increases their bioavailability and efficacy against multidrug-resistant bacteria. OBJECTIVE This study aimed to investigate the antimicrobial, antifungal, antioxidant, and cytotoxicity properties of cinnamon essential oil and peppermint essential oil as nanoemulsions compared to pure forms. For this purpose, analyses of the selected stable nanoemulsions were carried out. METHOD The droplet sizes and zeta potentials of peppermint essential oil nanoemulsions and cinnamon essential oil nanoemulsions were found to be 154.6±1.42 nm and -17.1±0.68 mV and 200.3±4.71 nm and -20.0±0.81 mV, respectively. Although the amount of essential oil used in nanoemulsions was 25% w/w, antioxidant and antimicrobial activities were found to be more effective compared to pure essential oils. RESULTS In cytotoxicity studies on the 3T3 cell line, both essential oil nanoemulsions showed higher cell viability than pure essential oils. At the same time, cinnamon essential oil nanoemulsions exhibited a higher antioxidant property than peppermint essential oil nanoemulsions and showed superiority in the antimicrobial susceptibility test conducted against four bacteria and two fungi. Cell viability tests determined that cinnamon essential oil nanoemulsions showed considerably higher cell viability compared to pure cinnamon essential oil. CONCLUSION These findings indicated that the prepared nanoemulsions in the current study might positively influence the dosing regimen and clinical outcomes of antibiotic therapy.
Collapse
Affiliation(s)
- Emrah Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Levent Alparslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - M Cemal Adıgüzel
- Department of Microbiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Veterinary Vaccine and Biological Product Development Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Gülşah Torkay
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
| | - Alper Baran
- Veterinary Vaccine and Biological Product Development Application and Research Center, Atatürk University, Erzurum, Turkey
- Department of Food Processing, Vocational School of Technical Sciences, Atatürk University, Erzurum, Turkey
| | - Ayça Bal-Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
- Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), Istinye University, Istanbul, Turkey
| | - Rukiye Sevinç-Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| |
Collapse
|
4
|
Hashemi SS, Najari M, Parvin M, Kalani MM, Assadi M, Seyedian R, Zaeri S. Wound healing effects of dexpanthenol-loaded core/shell electrospun nanofibers: Implication of oxidative stress in wound healing. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:97-106. [PMID: 38164485 PMCID: PMC10722473 DOI: 10.22038/ijbms.2023.71412.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/12/2023] [Indexed: 01/03/2024]
Abstract
Objectives Knowing the detrimental role of oxidative stress in wound healing and the anti-oxidant properties of Dexpanthenol (Dex), we aimed to produce Dex-loaded electrospun core/shell nanofibers for wound healing study. The novelty was measuring oxidative stress in wounds to know how oxidative stress was affected by Dex-loaded fibers. Materials and Methods TPVA solution containing Dex 6% (w/v) (core) and PVA/chitosan solution (shell) were coaxially electrospun with variable injection rates of the shell solution. Fibers were then tested for physicochemical properties, drug release profile, and effects on wound healing. Levels of tissue lipid peroxidation and superoxide dismutase activity were measured. Results Fibers produced at shell injection rate of 0.3 ml/hr (F3 fibers) showed core/shell structure with an average diameter of 252 nm, high hydrophilicity (swelling: 157% at equilibrium), and low weight loss (13.6%). Dex release from F3 fibers seemed to be ruled by the Fickian mechanism based on the Korsmeyer-Peppas model (R2 = 0.94, n = 0.37). Dex-loaded F3 fibers promoted fibroblast viability (128.4%) significantly on day 5 and also accelerated wound healing compared to the neat F3 fibers at macroscopic and microscopic levels on day 14 post-wounding. The important finding was a significant decrease in malondialdehyde (0.39 nmol/ mg protein) level and an increase in superoxide dismutase (5.29 unit/mg protein) activity in Dex-loaded F3 fiber-treated wound tissues. Conclusion Dex-loaded core/shell fibers provided nano-scale scaffolds with sustained release profile that significantly lowered tissue oxidative stress. This finding pointed to the importance of lowering oxidative stress to achieve proper wound healing.
Collapse
Affiliation(s)
- Seyede Sahar Hashemi
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahmoud Najari
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Milad Parvin
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Mehdi Kalani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Majid Assadi
- Nuclear Medicine and Molecular Imaging Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ramin Seyedian
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sasan Zaeri
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
5
|
Nikam AN, Roy A, Raychaudhuri R, Navti PD, Soman S, Kulkarni S, Shirur KS, Pandey A, Mutalik S. Organogels: "GelVolution" in Topical Drug Delivery - Present and Beyond. Curr Pharm Des 2024; 30:489-518. [PMID: 38757691 DOI: 10.2174/0113816128279479231231092905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 05/18/2024]
Abstract
Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.
Collapse
Affiliation(s)
- Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Amrita Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Prerana D Navti
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Krishnaraj Somayaji Shirur
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
6
|
Guo L, Fan L, Liu Y, Li J. Strategies for improving loading of emulsion-based functional oil powder. Crit Rev Food Sci Nutr 2023:1-20. [PMID: 37724529 DOI: 10.1080/10408398.2023.2257325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Functional oil is type of oil that is beneficial to human health and has nutritional value, however, functional oils are rich in bioactive substances such as polyunsaturated fatty acids which are sensitive to environmental factors and are susceptible to oxidation or decomposition. Construction of emulsion-based oil powder is a promising approach for improving the stability and solubility of functional oils. However, the low effective loading of oil in powder is the main challenge limiting encapsulation technology. This manuscript focuses on reviewing the current research progress of emulsion-based functional oil powder construction and systematically summarizes the processing characteristics of emulsion-based oil powder with high payload and summarizing the strategies to enhance the payload of powder in term of emulsification and drying, respectively. The impact of emulsion formation on oil powder production is discussed from different characteristics of emulsions, including emulsion composition, emulsification methods and emulsion types. In addition, the current status of improving material loading performance by various modifications to the drying technology is discussed, including the addition of drying processing additives, changes in drying parameters and the effect of innovative technological means.
Collapse
Affiliation(s)
- Lingxi Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Guo L, Fan L, Zhou Y, Li J. Constitution and reconstitution of microcapsules with high diacylglycerol oil loading capacity based on whey protein isolate / octenyl succinic anhydride starch/ inulin matrix. Int J Biol Macromol 2023; 242:124667. [PMID: 37121416 DOI: 10.1016/j.ijbiomac.2023.124667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
The aim of this study was to constitute microcapsule systems with high oil loading capacity by octenyl succinic anhydride (OSA) starch, whey protein isolate (WPI) and inulin (IN) substrates to provide a new method for encapsulating diacylglycerol oil. Specifically, this study characterizes the physicochemical properties and reconstitution capacity of highly oil loading diacylglycerol microcapsules by comparing the wall encapsulation capacity of the binary wall system OSA-IN, WPI-IN and the ternary wall system WPI-OSA (1:9, 5:5, 9:1)-IN for diacylglycerol oil. It was found that WPI-OSA (5:5)-IN significantly improved the water solubility of microcapsules (86.11 %) compared to OSA-IN microcapsules, and the addition of WPI made the surface of microcapsules smoother and increased the thermal stability and solubility of microcapsules; the addition of OSA enhanced the wettability of microcapsules compared to WPI-IN. In addition, WPI-OSA (5:5)-IN microcapsules have the highest encapsulation efficiency (96.03 %), high emulsion stability after reconstitution, and the smallest droplet size (212.83 nm) after 28 d. Therefore, the WPI-OSA-IN composite system is suitable for the production of highly oil-loaded microencapsulated systems with excellent reconstitution ability to expand the application of diacylglycerol oil.
Collapse
Affiliation(s)
- Lingxi Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yulin Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Baloch H, Siddiqua A, Nawaz A, Latif MS, Zahra SQ, Alomar SY, Ahmad N, Elsayed TM. Synthesis and Characterization of Sulfur Nanoparticles of Citrus limon Extract Embedded in Nanohydrogel Formulation: In Vitro and In Vivo Studies. Gels 2023; 9:gels9040284. [PMID: 37102896 PMCID: PMC10137662 DOI: 10.3390/gels9040284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
The study aimed to synthesize non-noxious, clean, reliable, and green sulfur nanoparticles (SNPs) from Citrus limon leaves. The synthesized SNPs were used to analyze particle size, zeta potential, UV–visible spectroscopy, SEM, and ATR-FTIR. The prepared SNPs exhibited a globule size of 55.32 ± 2.15 nm, PDI value of 0.365 ± 0.06, and zeta potential of −12.32 ± 0.23 mV. The presence of SNPs was confirmed by UV–visible spectroscopy in the range of 290 nm. The SEM image showed that the particles were spherical with a size of 40 nm. The ATR-FTIR study showed no interaction, and all the major peaks were preserved in the formulations. An antimicrobial and antifungal study of SNPs was carried out against Gram-positive bacteria (Staph. aureus, Bacillus), Gram-negative bacteria (E. coli and Bordetella), and fungal strains (Candida albicans). The study showed that Citrus limon extract SNPs exhibited better antimicrobial and antifungal activities against Staph. aureus, Bacillus, E. coli, Bordetella, and Candida albicans at a minimal inhibitory concentration of 50 μg/mL. Different antibiotics were used alone and in combination with SNPs of Citrus limon extract to evaluate their activity against various strains of bacteria and fungal strains. The study showed that using SNPs of Citrus limon extract with antibiotics has a synergistic effect against Staph.aureus, Bacillus, E. coli, Bordetella, and Candida albicans. SNPs were embedded in nanohydrogel formulations for in vivo (wound healing) studies. In preclinical studies, SNPs of Citrus limon extract embedded within a nanohydrogel formulation (NHGF4) have shown promising results. To be widely used in clinical settings, further studies are needed to evaluate their safety and efficacy in human volunteers.
Collapse
Affiliation(s)
- Hadia Baloch
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Aisha Siddiqua
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Shahid Latif
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Syeda Qurbat Zahra
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Suliman Yousef Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tarek M. Elsayed
- Pharmaceutical Technology Department, Faculty of Pharmacy, Sultan Zainal Abidin University, Besut Kampus, Besut 22200, Malaysia
| |
Collapse
|
9
|
Özakar E, Sevinç-Özakar R, Yılmaz B. Preparation, Characterization, and Evaluation of Cytotoxicity of Fast Dissolving Hydrogel Based Oral Thin Films Containing Pregabalin and Methylcobalamin. Gels 2023; 9:gels9020147. [PMID: 36826317 PMCID: PMC9957442 DOI: 10.3390/gels9020147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The oral availability of many drugs is problematic due to the pH of the stomach, enzymes, and first-pass effects through the liver. However, especially geriatric, pediatric, bedridden, or mentally handicapped patients and those with dysphagia have difficulty swallowing or chewing solid dosage forms. Oral Thin Films (OTFs) are one of the new drug delivery systems that can solve these problems. Pregabalin (PG) and Methylcobalamin (MC), which are frequently preferred for pain originating in the central nervous system, were brought together for the first time using OTF technology in this study. In this study, a quantification method for PG and MC was developed and validated simultaneously. Optimum formulations were selected with organoleptic and morphological controls, moisture absorption capacity, swelling capacity, percent elongation, foldability, pH, weight variability, thickness, disintegration time, and transparency tests on OTFs prepared by the solvent pouring method. Content uniformity, dissolution rate, determination of release kinetics, SEM, XRD, FT-IR, DSC, long-term stability, and cytotoxicity studies on the tongue epithelial cell line (SCC-9) were performed on selected OTFs. As a result, OTFs containing PG-MC, which are non-toxic, highly flexible, transparent, compatible with intraoral pH, with fast disintegration time (<30 s), and acceptable in taste and appearance, have been developed successfully.
Collapse
Affiliation(s)
- Emrah Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey
| | - Rukiye Sevinç-Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey
- Correspondence: ; Tel.: +90-442-2315247
| | - Bilal Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
10
|
Formulation Development and In Vitro/In Vivo Characterization of Methotrexate-Loaded Nanoemulsion Gel Formulations for Enhanced Topical Delivery. Gels 2022; 9:gels9010003. [PMID: 36661771 PMCID: PMC9857773 DOI: 10.3390/gels9010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Methotrexate-loaded oil-in-water nanoemulsion formulations were prepared using the high shear homogenization technique. A drug excipient study (ATR-FTIR) was carried out to investigate the compatibility between the drug, the polymers, and its admixtures. The thermal stability of the nanoemulsion formulations was evaluated by subjecting them to a heating and cooling cycle. The prepared nanoemulsion formulations (FNE1 to FNE6) were evaluated for particle size, PDI value, and entrapment efficiency (EE). They were analyzed for morphological information using transmission electron microscopy. The drug (methotrexate)-loaded nanoemulsion formulations (FNE2, FNE4, and FNE6) were then converted into nanoemulsion gel formulations by adding 1% chitosan (polymer) as a gelling agent. The nanoemulsion gel formulations (FNEG2, FNEG4, and FNEG6) were investigated for physicochemical parameters, viscosity, spreadability, extrudability, drug content, and skin irritation. Various penetration enhancers (olive oil, clove, and almond oil) were employed to examine the potency of the prepared nanoemulsion gel formulations. In vitro drug release, ex vivo permeation, skin drug retention, and stability tests were carried out for evaluation of the prepared nanoemulsion gel formulations (FNEG2, FNEG4, and FNEG6). The data obtained from the in vitro study were subjected to the kinetic model, and the Korsemeyer-Peppas model was best fitted to the data. The nanoemulsion gel formulation FNEG6 showed the maximum controlled drug release and followed an anomalous, non-Fickian release mechanism. The use of almond oil in the preparation of the nanoemulsion gel formulation FNEG6 helped the penetration of the drug across stratum corneum and the restructuring of the properties of skin and resulted in a higher penetration and retention of methotrexate in a deeper layer of the skin. The current study concluded that the methotrexate-loaded nanoemulsion gel formulation FNEG6 showed the best optimum release, permeation, and retention results as compared to the available oral tablets' formulations, followed by a low serum concentration and the maximum drug retention, which is beneficial in treating skin infections and reducing systemic toxicity.
Collapse
|