1
|
Zhai M, Shou T, Yin D, Chen Z, Wu Y, Liu Y, Zhao X, Hu S, Zhang L. Bio-Based Polyurethane Composites with Adjustable Fluorescence and Ultraviolet Shielding for Anti-Counterfeiting and Ultraviolet Protection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62606-62616. [PMID: 39483089 DOI: 10.1021/acsami.4c12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Polyurethane and its composites play an important role in innovative packing materials including anticounterfeiting and ultraviolet protection, however, they are mainly derived from petroleum resources that are not sustainable. In this study, a 100% biobased thermoplastic polyurethane (Bio-TPU) was synthesized using biobased poly(trimethylene ether) glycol, pentamethylene disocyanate, and 1,4-butanediol. Subsequently, biobased tannic acid (TA) was employed to prepare biobased composites. The structures and properties of Bio-TPU and its composites were systematically evaluated. The results showed that the Bio-TPU/TA composite films had excellent and controllable fluorescence and UV-shielding properties. The fluorescence colors of the Bio-TPU/TA composite films could be adjusted to blue, green, and yellow by varying the TA content and adding coupling agents. Moreover, the UV transmittance of the Bio-TPU/TA composites decreased from 79.25 to 5.43% below 400 nm with an increasing TA content, indicating an excellent ultraviolet-barrier performance. Consequently, biobased TPU/TA composite films can be utilized as innovative anticounterfeiting materials and UV-shielding protection films. This study is expected to facilitate sustainable development in the polyurethane industry and broaden the high-end applications of polyurethane such as fashion, electronics, food manufacturing, pharmaceuticals, and finance.
Collapse
Affiliation(s)
- Mengyao Zhai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tao Shou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dexian Yin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaowen Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiuying Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shikai Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Qin X, Cai X, Wang Y, Chen L, Zhao J, Zhang Y, Bi S, Zhou Y, Zhu Q, Cheng Y, Liu Y. A water-resistant egg white/chitosan/pectin blending film with spherical-linear molecular interpenetrating network strengthened by multifunctional tannin-nisin nanoparticles. Int J Biol Macromol 2024; 277:134548. [PMID: 39116973 DOI: 10.1016/j.ijbiomac.2024.134548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Edible films are effective alternatives to plastic packaging, however, the hydrophilicity of edible films based on protein and polysaccharide limits the application. Therefore, we fabricated a water-stable hybrid film with a linear-spherical interpenetrating molecular topology network using egg white (EW), chitosan (CS), and pectin. Meanwhile, the nisin-tannin acid self-assembly complex nanoparticles were employed as a multifunctional cross-linker, antibacterial and antioxidant agent to improve the performance of films. The FTIR, XRD, and SEM analysis revealed that the conformation and crystalline structure rearrangement of chitosan induced by the alkaline environment provided by egg white enhanced the network structure of films, effectively avoided the addition of modifying reagents. The proposed hybrid films exhibited excellent properties, with EW/TNPCS3 showing the best overall performance. The water contact angle (WCA) increased to 105.27 ± 1.62°, and its dissolution and swelling rates were significantly lower than pure egg white and pure chitosan films. Moreover, tannin-nisin (TN) nanoparticles endowed the films with excellent antimicrobial activity against the common Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Thus, the prepared blending films have great application potential in food preservation, especially to maintain stable performance in high humidity environment.
Collapse
Affiliation(s)
- Xianmin Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Xue Cai
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yilin Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Linqin Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Jingjing Zhao
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yifan Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Shenghui Bi
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yuxin Cheng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China.
| | - Yuanyuan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
3
|
Jackson J, Dietrich CH. Synergistic Antibacterial Effects of Gallate Containing Compounds with Silver Nanoparticles in Gallate Crossed Linked PVA Hydrogel Films. Antibiotics (Basel) 2024; 13:312. [PMID: 38666988 PMCID: PMC11047530 DOI: 10.3390/antibiotics13040312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Currently available silver-based antiseptic wound dressings have limited patient effectiveness. There exists a need for wound dressings that behave as comfortable degradable hydrogels with a strong antibiotic potential. The objectives of this project were to investigate the combined use of gallates (either epi gallo catechin gallate (EGCG), Tannic acid, or Quercetin) as both PVA crosslinking agents and as potential synergistic antibiotics in combination with silver nanoparticles. Crosslinking was assessed gravimetrically, silver and gallate release was measured using inductively coupled plasma and HPLC methods, respectively. Synergy was measured using 96-well plate FICI methods and in-gel antibacterial effects were measured using planktonic CFU assays. All gallates crosslinked PVA with optimal extended swelling obtained using EGCG or Quercetin at 14% loadings (100 mg in 500 mg PVA with glycerol). All three gallates were synergistic in combination with silver nanoparticles against both gram-positive and -negative bacteria. In PVA hydrogel films, silver nanoparticles with EGCG or Quercetin more effectively inhibited bacterial growth in CFU counts over 24 h as compared to films containing single agents. These biocompatible natural-product antibiotics, EGCG or Quercetin, may play a dual role of providing stable PVA hydrogel films and a powerful synergistic antibiotic effect in combination with silver nanoparticles.
Collapse
Affiliation(s)
- John Jackson
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada
| | - Claudia Helena Dietrich
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada;
| |
Collapse
|
4
|
Osolnik U, Vek V, Korošec RC, Oven P, Poljanšek I. Integration of wood-based components - Cellulose nanofibrils and tannic acid - into a poly(vinyl alcohol) matrix to improve functional properties. Int J Biol Macromol 2024; 256:128495. [PMID: 38035953 DOI: 10.1016/j.ijbiomac.2023.128495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Poly(vinyl alcohol) (PVA) biocomposite films reinforced with cellulose nanofibrils (CNF) and biologically active tannic acid (TA) were prepared. The influence of different concentrations of CNF and TA in the PVA polymer matrix was investigated in terms of mechanical properties, thermal properties and hydrophobicity improvement of the prepared films. The results showed that in all cases the addition of CNF and TA improved the values of tensile strength and elastic modulus. The PVA film with 10 % CNF exhibited a 30 % higher tensile strength, and the three-component PVA film with 2 % CNF and 10 % TA (P2C10T) exhibited a 40 % higher tensile strength compared to the neat PVA film. The thermal properties (Tg, Tonset) of the PVA biocomposite films were greatly improved, with a significant effect observed for the three-component PVA films. The Tg of the PVA film with 10 % CNF and 10 % TA was 87 °C, 12 °C higher than that of the neat PVA film. For three-component PVA biocomposites with 4 % and 6 % CNF and with all weight percentages of TA, the Tonset shifted to a higher temperature range by about 30 °C compared to the neat PVA film. The PVA film with 2 % CNF and 10 % TA exhibited about a 20° higher contact angle than the neat PVA film. Moreover, the addition of both fillers to the PVA matrix resulted in PVA biocomposites with lower water absorption. PVA film with 10 % TA absorbed about 90 % less water and PVA film with 10 % CNF and 10 % TA absorbed about 80 % less water than the neat PVA film after the films were soaked in water for one hour. The better properties of the composite films produced are due to hydrogen and ester bonds between the components of the composite, which was confirmed by FT-IR spectroscopy. Antioxidant effective films were also obtained due to the biologically active TA to the PVA and PVA/CNF systems.
Collapse
Affiliation(s)
- Urša Osolnik
- University of Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Viljem Vek
- University of Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Romana Cerc Korošec
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Primož Oven
- University of Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Ida Poljanšek
- University of Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|