1
|
Schiffers S, Oberdoerffer S. ac4C: a fragile modification with stabilizing functions in RNA metabolism. RNA (NEW YORK, N.Y.) 2024; 30:583-594. [PMID: 38531654 PMCID: PMC11019744 DOI: 10.1261/rna.079948.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
In recent years, concerted efforts to map and understand epitranscriptomic modifications in mRNA have unveiled new complexities in the regulation of gene expression. These studies cumulatively point to diverse functions in mRNA metabolism, spanning pre-mRNA processing, mRNA degradation, and translation. However, this emerging landscape is not without its intricacies and sources of discrepancies. Disparities in detection methodologies, divergent interpretations of functional outcomes, and the complex nature of biological systems across different cell types pose significant challenges. With a focus of N4-acetylcytidine (ac4C), this review endeavors to unravel conflicting narratives by examining the technological, biological, and methodological factors that have contributed to discrepancies and thwarted research progress. Our goal is to mitigate detection inconsistencies and establish a unified model to elucidate the contribution of ac4C to mRNA metabolism and cellular equilibrium.
Collapse
Affiliation(s)
- Sarah Schiffers
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
2
|
Ammann G, Berg M, Dalwigk JF, Kaiser SM. Pitfalls in RNA Modification Quantification Using Nucleoside Mass Spectrometry. Acc Chem Res 2023; 56:3121-3131. [PMID: 37944919 PMCID: PMC10666278 DOI: 10.1021/acs.accounts.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
In recent years, there has been a high interest in researching RNA modifications, as they are involved in many cellular processes and in human diseases. A substantial set of enzymes within the cell, called RNA writers, place RNA modifications selectively and site-specifically. Another set of enzymes, called readers, recognize these modifications which guide the fate of the modified RNA. Although RNA is a transient molecule and RNA modification could be removed by RNA degradation, a subclass of enzymes, called RNA erasers, remove RNA modifications selectively and site-specifically to alter the characteristics of the RNA. The detection of RNA modifications can be done by various methods including second and next generation sequencing but also mass spectrometry. An approach capable of both qualitative and quantitative RNA modification analysis is liquid chromatography coupled to mass spectrometry of enzymatic hydrolysates of RNA into nucleosides. However, for successful detection and quantification, various factors must be considered to avoid biased identification and inaccurate quantification. In this Account, we identify three classes of errors that may distort the analysis. These classes comprise (I) errors related to chemical instabilities, (II) errors revolving around enzymatic hydrolysis to nucleosides, and (III) errors arising from issues with chromatographic separation and/or subsequent mass spectrometric analysis.A prominent example for class 1 is Dimroth rearrangement of m1A to m6A, but class 1 also comprises hydrolytic reactions and reactions with buffer components. Here, we also present the conversion of m3C to m3U under mild alkaline conditions and propose a practical solution to overcome these instabilities. Class 2 errors-such as contaminations in hydrolysis reagents or nuclease specificities-have led to erroneous discoveries of nucleosides in the past and possess the potential for misquantification of nucleosides. Impurities in the samples may also lead to class 3 errors: For instance, issues with chromatographic separation may arise from residual organic solvents, and salt adducts may hamper mass spectrometric quantification. This Account aims to highlight various errors connected to mass spectrometry analysis of nucleosides and presents solutions for how to overcome or circumnavigate those issues. Therefore, the authors anticipate that many scientists, but especially those who plan on doing nucleoside mass spectrometry, will benefit from the collection of data presented in this Account as a raised awareness, toward the variety of potential pitfalls, may further enhance the quality of data.
Collapse
Affiliation(s)
- Gregor Ammann
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Maximilian Berg
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Jan Felix Dalwigk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Stefanie M. Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
3
|
Yared MJ, Yoluç Y, Catala M, Tisné C, Kaiser S, Barraud P. Different modification pathways for m1A58 incorporation in yeast elongator and initiator tRNAs. Nucleic Acids Res 2023; 51:10653-10667. [PMID: 37650648 PMCID: PMC10602860 DOI: 10.1093/nar/gkad722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
As essential components of the protein synthesis machinery, tRNAs undergo a tightly controlled biogenesis process, which include the incorporation of numerous posttranscriptional modifications. Defects in these tRNA maturation steps may lead to the degradation of hypomodified tRNAs by the rapid tRNA decay (RTD) and nuclear surveillance pathways. We previously identified m1A58 as a late modification introduced after modifications Ψ55 and T54 in yeast elongator tRNAPhe. However, previous reports suggested that m1A58 is introduced early during the tRNA modification process, in particular on primary transcripts of initiator tRNAiMet, which prevents its degradation by RNA decay pathways. Here, aiming to reconcile this apparent inconsistency on the temporality of m1A58 incorporation, we examined its introduction into yeast elongator and initiator tRNAs. We used specifically modified tRNAs to report on the molecular aspects controlling the Ψ55 → T54 → m1A58 modification circuit in elongator tRNAs. We also show that m1A58 is efficiently introduced on unmodified tRNAiMet, and does not depend on prior modifications. Finally, we show that m1A58 has major effects on the structural properties of initiator tRNAiMet, so that the tRNA elbow structure is only properly assembled when this modification is present. This observation provides a structural explanation for the degradation of hypomodified tRNAiMet lacking m1A58 by the nuclear surveillance and RTD pathways.
Collapse
Affiliation(s)
- Marcel-Joseph Yared
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Yasemin Yoluç
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Marjorie Catala
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Carine Tisné
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Stefanie Kaiser
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, Germany
| | - Pierre Barraud
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| |
Collapse
|
4
|
Huang G, Zhang F, Xie D, Ma Y, Wang P, Cao G, Chen L, Lin S, Zhao Z, Cai Z. High-throughput profiling of RNA modifications by ultra-performance liquid chromatography coupled to complementary mass spectrometry: Methods, quality control, and applications. Talanta 2023; 263:124697. [PMID: 37262985 DOI: 10.1016/j.talanta.2023.124697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
Although next-generation sequencing technology has been used to delineate RNA modifications in recent years, the paucity of appropriate converting reactions or specific antibodies impedes the accurate characterization and quantification of numerous RNA modifications, especially when these modifications demonstrate wide variations across developmental stages and cell types. In this study, we developed a high-throughput analytical platform coupling ultra-performance liquid chromatograph (UPLC) with complementary mass spectrometry (MS) to identify and quantify RNA modifications in both synthetic and biological samples. Sixty-four types of RNA modifications, including positional isomers and hypermodified ribonucleosides, were successfully monitored within a 16-min single run of UPLC-MS. Two independent methods to cross-validate the purity of RNA extracted from Caenorhabditis elegans (C. elegans) were developed using the coexisting C. elegans and Escherichia coli (E. coli) as a surveillance system. To test the validity of the method, we investigated the RNA modification landscape of three model organisms, C. elegans, E. coli, and Arabidopsis thaliana (A. thaliana). Both the identity and molarity of modified ribonucleosides markedly varied among the species. Moreover, our platform is not only useful for exploring the dynamics of RNA modifications in response to environmental cues (e.g., cold shock) but can also help with the identification of RNA-modifying enzymes in genetic studies. Cumulatively, our method presents a novel platform for the comprehensive analysis of RNA modifications, which will be of benefit to both analytical chemists involved in biomarker discovery and biologists conducting functional studies of RNA modifications.
Collapse
Affiliation(s)
- Gefei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Feng Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Pengxi Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Leijian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Siyi Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
5
|
Patel A, Clark KD. Characterizing RNA modifications in the central nervous system and single cells by RNA sequencing and liquid chromatography-tandem mass spectrometry techniques. Anal Bioanal Chem 2023:10.1007/s00216-023-04604-y. [PMID: 36840809 DOI: 10.1007/s00216-023-04604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
Post-transcriptional modifications to RNA constitute a newly appreciated layer of translation regulation in the central nervous system (CNS). The identity, stoichiometric quantity, and sequence position of these unusual epitranscriptomic marks are central to their function, making analytical methods that are capable of accurate and reproducible measurements paramount to the characterization of the neuro-epitranscriptome. RNA sequencing-based methods and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have been leveraged to provide an early glimpse of the landscape of RNA modifications in bulk CNS tissues. However, recent advances in sample preparation, separations, and detection methods have revealed that individual cells display remarkable heterogeneity in their RNA modification profiles, raising questions about the prevalence and function of cell-specific distributions of post-transcriptionally modified nucleosides in the brain. In this Trends article, we present an overview of RNA sequencing and LC-MS/MS methodologies for the analysis of RNA modifications in the CNS with special emphasis on recent advancements in techniques that facilitate single-cell and subcellular detection.
Collapse
Affiliation(s)
- Arya Patel
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | - Kevin D Clark
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
6
|
Ito-Kureha T, Leoni C, Borland K, Cantini G, Bataclan M, Metzger RN, Ammann G, Krug AB, Marsico A, Kaiser S, Canzar S, Feske S, Monticelli S, König J, Heissmeyer V. The function of Wtap in N 6-adenosine methylation of mRNAs controls T cell receptor signaling and survival of T cells. Nat Immunol 2022; 23:1208-1221. [PMID: 35879451 DOI: 10.1038/s41590-022-01268-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
T cell antigen-receptor (TCR) signaling controls the development, activation and survival of T cells by involving several layers and numerous mechanisms of gene regulation. N6-methyladenosine (m6A) is the most prevalent messenger RNA modification affecting splicing, translation and stability of transcripts. In the present study, we describe the Wtap protein as essential for m6A methyltransferase complex function and reveal its crucial role in TCR signaling in mouse T cells. Wtap and m6A methyltransferase functions were required for the differentiation of thymocytes, control of activation-induced death of peripheral T cells and prevention of colitis by enabling gut RORγt+ regulatory T cell function. Transcriptome and epitranscriptomic analyses reveal that m6A modification destabilizes Orai1 and Ripk1 mRNAs. Lack of post-transcriptional repression of the encoded proteins correlated with increased store-operated calcium entry activity and diminished survival of T cells with conditional genetic inactivation of Wtap. These findings uncover how m6A modification impacts on TCR signal transduction and determines activation and survival of T cells.
Collapse
Affiliation(s)
- Taku Ito-Kureha
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Cristina Leoni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Kayla Borland
- Department of Chemistry, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Giulia Cantini
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany.,Institute for Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marian Bataclan
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Rebecca N Metzger
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Gregor Ammann
- Department of Chemistry, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Annalisa Marsico
- Institute for Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie Kaiser
- Department of Chemistry, Ludwig-Maximilians-Universität in Munich, Munich, Germany.,Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt am Main, Germany
| | - Stefan Canzar
- Gene Center, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany. .,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|
7
|
Šimonová A, Romanská V, Benoni B, Škubník K, Šmerdová L, Prochazkova M, Spustová K, Moravčík O, Gahurova L, Pačes J, Plevka P, Cahova H. Honeybee iflaviruses pack specific tRNA fragments from host cells in their virions. Chembiochem 2022; 23:e202200281. [PMID: 35771148 PMCID: PMC9544947 DOI: 10.1002/cbic.202200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Indexed: 11/15/2022]
Abstract
The Picornavirales include viruses that infect vertebrates, insects, and plants. It was believed that they pack only their genomic mRNA in the particles; thus, we envisaged these viruses as excellent model systems for studies of mRNA modifications. We used LC–MS to analyze digested RNA isolated from particles of the sacbrood and deformed wing iflaviruses as well as of the echovirus 18 and rhinovirus 2 picornaviruses. Whereas in the picornavirus RNAs we detected only N6‐methyladenosine and 2’‐O‐methylated nucleosides, the iflavirus RNAs contained a wide range of methylated nucleosides, such as 1‐methyladenosine (m1A) and 5‐methylcytidine (m5C). Mapping of m1A and m5C through RNA sequencing of the SBV and DWV RNAs revealed the presence of tRNA molecules. Both modifications were detected only in tRNA. Further analysis revealed that tRNAs are present in form of 3’ and 5’ fragments and they are packed selectively. Moreover, these tRNAs are typically packed by other viruses.
Collapse
Affiliation(s)
- Anna Šimonová
- Charles University: Univerzita Karlova, First Faculty of Medicine, CZECH REPUBLIC
| | - Veronika Romanská
- Charles University: Univerzita Karlova, First Faculty of Medicine, CZECH REPUBLIC
| | - Barbora Benoni
- Charles University: Univerzita Karlova, First Faculty of Medicine, CZECH REPUBLIC
| | - Karel Škubník
- Masaryk University: Masarykova Univerzita, CEITEC, CZECH REPUBLIC
| | - Lenka Šmerdová
- Masaryk University: Masarykova Univerzita, CEITEC, CZECH REPUBLIC
| | | | - Kristina Spustová
- IOCB CAS: Ustav organicke chemie a biochemie Akademie ved Ceske republiky, Chemical Biology of Nucleic Acids, CZECH REPUBLIC
| | - Ondřej Moravčík
- Institute of Molecular Genetics Czech Academy of Sciences: Ustav molekularni genetiky Akademie Ved Ceske Republiky, Bioinformatic, CZECH REPUBLIC
| | - Lenka Gahurova
- University of South Bohemia Faculty of Science: Jihoceska Univerzita v Ceskych Budejovicich Prirodovedecka Fakulta, Departement of Molecular Biology, CZECH REPUBLIC
| | - Jan Pačes
- Institute of Molecular Genetics Czech Academy of Sciences: Ustav molekularni genetiky Akademie Ved Ceske Republiky, Bioinformatic, CZECH REPUBLIC
| | - Pavel Plevka
- Masaryk University: Masarykova Univerzita, CEITEC, CZECH REPUBLIC
| | - Hana Cahova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic, CZECH REPUBLIC
| |
Collapse
|
8
|
Huang G, Ding Q, Xie D, Cai Z, Zhao Z. Technical challenges in defining RNA modifications. Semin Cell Dev Biol 2021; 127:155-165. [PMID: 34838434 DOI: 10.1016/j.semcdb.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023]
Abstract
It is well established that DNA base modifications play a key role in gene regulation during development and in response to environmental stress. This type of epigenetic control of development and environmental responses has been intensively studied over the past few decades. Similar to DNA, various RNA species also undergo modifications that play important roles in, for example, RNA splicing, protein translation, and the avoidance of immune surveillance by host. More than 160 different types of RNA modifications have been identified. In addition to base modifications, RNA modification also involves splicing of pre-mRNAs, leading to as many as tens of transcript isoforms from a single pre-RNA, especially in higher organisms. However, the function, prevalence and distribution of RNA modifications are poorly understood. The lack of a suitable method for the reliable identification of RNA modifications constitutes a significant challenge to studying their functions. This review focuses on the technologies that enable de novo identification of RNA base modifications and the alternatively spliced mRNA transcripts.
Collapse
Affiliation(s)
- Gefei Huang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China.
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
9
|
Yoluç Y, van de Logt E, Kellner-Kaiser S. The Stress-Dependent Dynamics of Saccharomyces cerevisiae tRNA and rRNA Modification Profiles. Genes (Basel) 2021; 12:1344. [PMID: 34573326 PMCID: PMC8470187 DOI: 10.3390/genes12091344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/27/2023] Open
Abstract
RNAs are key players in the cell, and to fulfil their functions, they are enzymatically modified. These modifications have been found to be dynamic and dependent on internal and external factors, such as stress. In this study we used nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS) to address the question of which mechanisms allow the dynamic adaptation of RNA modifications during stress in the model organism S. cerevisiae. We found that both tRNA and rRNA transcription is stalled in yeast exposed to stressors such as H2O2, NaAsO2 or methyl methanesulfonate (MMS). From the absence of new transcripts, we concluded that most RNA modification profile changes observed to date are linked to changes happening on the pre-existing RNAs. We confirmed these changes, and we followed the fate of the pre-existing tRNAs and rRNAs during stress recovery. For MMS, we found previously described damage products in tRNA, and in addition, we found evidence for direct base methylation damage of 2'O-ribose methylated nucleosides in rRNA. While we found no evidence for increased RNA degradation after MMS exposure, we observed rapid loss of all methylation damages in all studied RNAs. With NAIL-MS we further established the modification speed in new tRNA and 18S and 25S rRNA from unstressed S. cerevisiae. During stress exposure, the placement of modifications was delayed overall. Only the tRNA modifications 1-methyladenosine and pseudouridine were incorporated as fast in stressed cells as in control cells. Similarly, 2'-O-methyladenosine in both 18S and 25S rRNA was unaffected by the stressor, but all other rRNA modifications were incorporated after a delay. In summary, we present mechanistic insights into stress-dependent RNA modification profiling in S. cerevisiae tRNA and rRNA.
Collapse
Affiliation(s)
- Yasemin Yoluç
- Department of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany;
| | - Erik van de Logt
- Department of Chemistry, Ludwig-Maximilians University Munich, 81377 Munich, Germany;
| | - Stefanie Kellner-Kaiser
- Department of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany;
| |
Collapse
|
10
|
Hagelskamp F, Kellner S. Analysis of the epitranscriptome with ion-pairing reagent free oligonucleotide mass spectrometry. Methods Enzymol 2021; 658:111-135. [PMID: 34517944 DOI: 10.1016/bs.mie.2021.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA modifications gain growing attention as a new frontier in the life sciences but with the rise of RNA vaccines also in biomedical drug development. Impeccable characterization of RNA modifications within their sequence context remains an analytical challenge. Oligonucleotide mass spectrometry (ON-MS), an approach similar to bottom-up proteome analysis, is capable of defining a short 5-15 nucleotide sequence context of an RNA modification while delivering information on the chemical character of the modified nucleotide. Commonly, ON-MS requires the use of ion pairing reagents for ON separation which is not compatible with most other MS-based applications and only few laboratories run dedicated MS instruments for the task. Here, we present an ON-MS technique which is independent of ion pairing reagents and can be used on any available mass spectrometer without risking its sensitivity for other analytes. In this chapter, we describe the experiments necessary for ON-MS method development, ON-MS application to native and synthetic RNAs and finally a guideline for data analysis.
Collapse
Affiliation(s)
- Felix Hagelskamp
- Goethe-University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
| | - Stefanie Kellner
- Goethe-University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany.
| |
Collapse
|
11
|
Hoffmann A, Erber L, Betat H, Stadler PF, Mörl M, Fallmann J. Changes of the tRNA Modification Pattern during the Development of Dictyostelium discoideum. Noncoding RNA 2021; 7:32. [PMID: 34071416 PMCID: PMC8163159 DOI: 10.3390/ncrna7020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Dictyostelium discoideum is a social amoeba, which on starvation develops from a single-cell state to a multicellular fruiting body. This developmental process is accompanied by massive changes in gene expression, which also affect non-coding RNAs. Here, we investigate how tRNAs as key regulators of the translation process are affected by this transition. To this end, we used LOTTE-seq to sequence the tRNA pool of D. discoideum at different developmental time points and analyzed both tRNA composition and tRNA modification patterns. We developed a workflow for the specific detection of modifications from reverse transcriptase signatures in chemically untreated RNA-seq data at single-nucleotide resolution. It avoids the comparison of treated and untreated RNA-seq data using reverse transcription arrest patterns at nucleotides in the neighborhood of a putative modification site as internal control. We find that nucleotide modification sites in D. discoideum tRNAs largely conform to the modification patterns observed throughout the eukaroytes. However, there are also previously undescribed modification sites. We observe substantial dynamic changes of both expression levels and modification patterns of certain tRNA types during fruiting body development. Beyond the specific application to D. discoideum our results demonstrate that the developmental variability of tRNA expression and modification can be traced efficiently with LOTTE-seq.
Collapse
Affiliation(s)
- Anne Hoffmann
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany; (A.H.); (P.F.S.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at Leipzig University and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, D-04103 Leipzig, Germany
| | - Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany; (L.E.); (H.B.); (M.M.)
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany; (L.E.); (H.B.); (M.M.)
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany; (A.H.); (P.F.S.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, D-04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, 111321 Bogotá, D.C., Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany; (L.E.); (H.B.); (M.M.)
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany; (A.H.); (P.F.S.)
| |
Collapse
|
12
|
Pereira M, Ribeiro DR, Pinheiro MM, Ferreira M, Kellner S, Soares AR. m 5U54 tRNA Hypomodification by Lack of TRMT2A Drives the Generation of tRNA-Derived Small RNAs. Int J Mol Sci 2021; 22:ijms22062941. [PMID: 33799331 PMCID: PMC8001983 DOI: 10.3390/ijms22062941] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023] Open
Abstract
Transfer RNA (tRNA) molecules contain various post-transcriptional modifications that are crucial for tRNA stability, translation efficiency, and fidelity. Besides their canonical roles in translation, tRNAs also originate tRNA-derived small RNAs (tsRNAs), a class of small non-coding RNAs with regulatory functions ranging from translation regulation to gene expression control and cellular stress response. Recent evidence indicates that tsRNAs are also modified, however, the impact of tRNA epitranscriptome deregulation on tsRNAs generation is only now beginning to be uncovered. The 5-methyluridine (m5U) modification at position 54 of cytosolic tRNAs is one of the most common and conserved tRNA modifications among species. The tRNA methyltransferase TRMT2A catalyzes this modification, but its biological role remains mostly unexplored. Here, we show that TRMT2A knockdown in human cells induces m5U54 tRNA hypomodification and tsRNA formation. More specifically, m5U54 hypomodification is followed by overexpression of the ribonuclease angiogenin (ANG) that cleaves tRNAs near the anticodon, resulting in accumulation of 5′tRNA-derived stress-induced RNAs (5′tiRNAs), namely 5′tiRNA-GlyGCC and 5′tiRNA-GluCTC, among others. Additionally, transcriptomic analysis confirms that down-regulation of TRMT2A and consequently m5U54 hypomodification impacts the cellular stress response and RNA stability, which is often correlated with tiRNA generation. Accordingly, exposure to oxidative stress conditions induces TRMT2A down-regulation and tiRNA formation in mammalian cells. These results establish a link between tRNA hypomethylation and ANG-dependent tsRNAs formation and unravel m5U54 as a tRNA cleavage protective mark.
Collapse
Affiliation(s)
- Marisa Pereira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810 Aveiro, Portugal; (M.P.); (D.R.R.); (M.M.P.); (M.F.)
| | - Diana R. Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810 Aveiro, Portugal; (M.P.); (D.R.R.); (M.M.P.); (M.F.)
| | - Miguel M. Pinheiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810 Aveiro, Portugal; (M.P.); (D.R.R.); (M.M.P.); (M.F.)
| | - Margarida Ferreira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810 Aveiro, Portugal; (M.P.); (D.R.R.); (M.M.P.); (M.F.)
| | - Stefanie Kellner
- Department of Chemistry, Ludwig Maximilians University Munich, 81377 Munich, Germany;
- Institute of Pharmaceutical Chemistry, Goethe-University, 60438 Frankfurt, Germany
| | - Ana R. Soares
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810 Aveiro, Portugal; (M.P.); (D.R.R.); (M.M.P.); (M.F.)
- Correspondence:
| |
Collapse
|
13
|
Yoluç Y, Ammann G, Barraud P, Jora M, Limbach PA, Motorin Y, Marchand V, Tisné C, Borland K, Kellner S. Instrumental analysis of RNA modifications. Crit Rev Biochem Mol Biol 2021; 56:178-204. [PMID: 33618598 DOI: 10.1080/10409238.2021.1887807] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organisms from all domains of life invest a substantial amount of energy for the introduction of RNA modifications into nearly all transcripts studied to date. Instrumental analysis of RNA can focus on the modified residues and reveal the function of these epitranscriptomic marks. Here, we will review recent advances and breakthroughs achieved by NMR spectroscopy, sequencing, and mass spectrometry of the epitranscriptome.
Collapse
Affiliation(s)
- Yasemin Yoluç
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Gregor Ammann
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Pierre Barraud
- Expression génétique microbienne, UMR 8261, CNRS, Institut de biologie physico-chimique, IBPC, Université de Paris, Paris, France
| | - Manasses Jora
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Patrick A Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Yuri Motorin
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, Epitranscriptomics and RNA Sequencing Core facility, UM S2008, IBSLor, Nancy, France
| | - Carine Tisné
- Expression génétique microbienne, UMR 8261, CNRS, Institut de biologie physico-chimique, IBPC, Université de Paris, Paris, France
| | - Kayla Borland
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Stefanie Kellner
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany.,Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, Germany
| |
Collapse
|
14
|
Jora M, Borland K, Abernathy S, Zhao R, Kelley M, Kellner S, Addepalli B, Limbach PA. Chemical Amination/Imination of Carbonothiolated Nucleosides During RNA Hydrolysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Manasses Jora
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Kayla Borland
- Department of Chemistry Ludwig Maximilians University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Scott Abernathy
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Melissa Kelley
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Stefanie Kellner
- Department of Chemistry Ludwig Maximilians University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| |
Collapse
|
15
|
Selmi T, Hussain S, Dietmann S, Heiß M, Borland K, Flad S, Carter JM, Dennison R, Huang YL, Kellner S, Bornelöv S, Frye M. Sequence- and structure-specific cytosine-5 mRNA methylation by NSUN6. Nucleic Acids Res 2021; 49:1006-1022. [PMID: 33330931 PMCID: PMC7826283 DOI: 10.1093/nar/gkaa1193] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
The highly abundant N6-methyladenosine (m6A) RNA modification affects most aspects of mRNA function, yet the precise function of the rarer 5-methylcytidine (m5C) remains largely unknown. Here, we map m5C in the human transcriptome using methylation-dependent individual-nucleotide resolution cross-linking and immunoprecipitation (miCLIP) combined with RNA bisulfite sequencing. We identify NSUN6 as a methyltransferase with strong substrate specificity towards mRNA. NSUN6 primarily targeted three prime untranslated regions (3'UTR) at the consensus sequence motif CTCCA, located in loops of hairpin structures. Knockout and rescue experiments revealed enhanced mRNA and translation levels when NSUN6-targeted mRNAs were methylated. Ribosome profiling further demonstrated that NSUN6-specific methylation correlated with translation termination. While NSUN6 was dispensable for mouse embryonic development, it was down-regulated in human tumours and high expression of NSUN6 indicated better patient outcome of certain cancer types. In summary, our study identifies NSUN6 as a methyltransferase targeting mRNA, potentially as part of a quality control mechanism involved in translation termination fidelity.
Collapse
Affiliation(s)
- Tommaso Selmi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Shobbir Hussain
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Sabine Dietmann
- Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Matthias Heiß
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, Haus F, 81377 Munich, Germany
| | - Kayla Borland
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, Haus F, 81377 Munich, Germany
| | - Sophia Flad
- German Cancer Research Center – Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jean-Michel Carter
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Rebecca Dennison
- Cambridge Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0SR, UK
| | - Ya-Lin Huang
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, Haus F, 81377 Munich, Germany
| | - Susanne Bornelöv
- Wellcome – MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Michaela Frye
- German Cancer Research Center – Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Heiss M, Hagelskamp F, Marchand V, Motorin Y, Kellner S. Cell culture NAIL-MS allows insight into human tRNA and rRNA modification dynamics in vivo. Nat Commun 2021; 12:389. [PMID: 33452242 PMCID: PMC7810713 DOI: 10.1038/s41467-020-20576-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Recently, studies about RNA modification dynamics in human RNAs are among the most controversially discussed. As a main reason, we identified the unavailability of a technique which allows the investigation of the temporal processing of RNA transcripts. Here, we present nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS) for efficient, monoisotopic stable isotope labeling in both RNA and DNA in standard cell culture. We design pulse chase experiments and study the temporal placement of modified nucleosides in tRNAPhe and 18S rRNA. In existing RNAs, we observe a time-dependent constant loss of modified nucleosides which is masked by post-transcriptional methylation mechanisms and thus undetectable without NAIL-MS. During alkylation stress, NAIL-MS reveals an adaptation of tRNA modifications in new transcripts but not existing ones. Overall, we present a fast and reliable stable isotope labeling strategy which allows in-depth study of RNA modification dynamics in human cell culture.
Collapse
Affiliation(s)
- Matthias Heiss
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Felix Hagelskamp
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, Inserm, UMS2008/US40 IBSLor and UMR7365 IMoPA, F-54000, Nancy, France
| | - Yuri Motorin
- Université de Lorraine, CNRS, Inserm, UMS2008/US40 IBSLor and UMR7365 IMoPA, F-54000, Nancy, France
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str, 9, 60438, Frankfurt, Germany.
| |
Collapse
|
17
|
Heiss M, Borland K, Yoluç Y, Kellner S. Quantification of Modified Nucleosides in the Context of NAIL-MS. Methods Mol Biol 2021; 2298:279-306. [PMID: 34085252 DOI: 10.1007/978-1-0716-1374-0_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent progress in epitranscriptome research shows an interplay of enzymes modifying RNAs and enzymes dedicated for RNA modification removal. One of the main techniques to study RNA modifications is liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) as it allows sensitive detection of modified nucleosides. Although RNA modifications have been found to be highly dynamic, state-of-the-art LC-MS/MS analysis only gives a static view on modifications and does not allow the investigation of temporal modification placement. Here, we present the principles of nucleic acid isotope labeling coupled with mass spectrometry, termed NAIL-MS, which overcomes these limitations by stable isotope labeling in human cell culture and gives detailed instructions on how to label cells and process samples in order to get reliable results. For absolute quantification in the context of NAIL-MS, we explain the production of internal standards in detail. Furthermore, we outline the requirements for stable isotope labeling in cell culture and all subsequent steps to receive nucleoside mixtures of native RNA for NAIL-MS analysis. In the final section of this chapter, we describe the distinctive features of NAIL-MS data analysis with a special focus toward absolute quantification of modified nucleosides.
Collapse
Affiliation(s)
- Matthias Heiss
- Department of Chemistry, Ludwig Maximilians University Munich, Munich, Germany
| | - Kayla Borland
- Department of Chemistry, Ludwig Maximilians University Munich, Munich, Germany
| | - Yasemin Yoluç
- Department of Chemistry, Ludwig Maximilians University Munich, Munich, Germany
| | - Stefanie Kellner
- Department of Chemistry, Ludwig Maximilians University Munich, Munich, Germany.
| |
Collapse
|
18
|
Jora M, Borland K, Abernathy S, Zhao R, Kelley M, Kellner S, Addepalli B, Limbach PA. Chemical Amination/Imination of Carbonothiolated Nucleosides During RNA Hydrolysis. Angew Chem Int Ed Engl 2020; 60:3961-3966. [DOI: 10.1002/anie.202010793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/17/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Manasses Jora
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Kayla Borland
- Department of Chemistry Ludwig Maximilians University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Scott Abernathy
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Melissa Kelley
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Stefanie Kellner
- Department of Chemistry Ludwig Maximilians University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| |
Collapse
|
19
|
Borek C, Reichle VF, Kellner S. Synthesis and Metabolic Fate of 4-Methylthiouridine in Bacterial tRNA. Chembiochem 2020; 21:2768-2771. [PMID: 32394608 PMCID: PMC7586944 DOI: 10.1002/cbic.202000272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Ribonucleic acid (RNA) is central to many life processes and, to fulfill its function, it has a substantial chemical variety in its building blocks. Enzymatic thiolation of uridine introduces 4-thiouridine (s4 U) into many bacterial transfer RNAs (tRNAs), which is used as a sensor for UV radiation. A similar modified nucleoside, 2-thiocytidine, was recently found to be sulfur-methylated especially in bacteria exposed to antibiotics and simple methylating reagents. Herein, we report the synthesis of 4-methylthiouridine (ms4 U) and confirm its presence and additional formation under stress in Escherichia coli. We used the synthetic ms4 U for isotope dilution mass spectrometry and compared its abundance to other reported tRNA damage products. In addition, we applied sophisticated stable-isotope pulse chase studies (NAIL-MS) and showed its AlkB-independent removal in vivo. Our findings reveal the complex nature of bacterial RNA damage repair.
Collapse
Affiliation(s)
- Christoph Borek
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Valentin F. Reichle
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Stefanie Kellner
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
20
|
Schäck MA, Jablonski KP, Gräf S, Klassen R, Schaffrath R, Kellner S, Hammann C. Eukaryotic life without tQCUG: the role of Elongator-dependent tRNA modifications in Dictyostelium discoideum. Nucleic Acids Res 2020; 48:7899-7913. [PMID: 32609816 PMCID: PMC7430636 DOI: 10.1093/nar/gkaa560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
In the Elongator-dependent modification pathway, chemical modifications are introduced at the wobble uridines at position 34 in transfer RNAs (tRNAs), which serve to optimize codon translation rates. Here, we show that this three-step modification pathway exists in Dictyostelium discoideum, model of the evolutionary superfamily Amoebozoa. Not only are previously established modifications observable by mass spectrometry in strains with the most conserved genes of each step deleted, but also additional modifications are detected, indicating a certain plasticity of the pathway in the amoeba. Unlike described for yeast, D. discoideum allows for an unconditional deletion of the single tQCUG gene, as long as the Elongator-dependent modification pathway is intact. In gene deletion strains of the modification pathway, protein amounts are significantly reduced as shown by flow cytometry and Western blotting, using strains expressing different glutamine leader constructs fused to GFP. Most dramatic are these effects, when the tQCUG gene is deleted, or Elp3, the catalytic component of the Elongator complex is missing. In addition, Elp3 is the most strongly conserved protein of the modification pathway, as our phylogenetic analysis reveals. The implications of this observation are discussed with respect to the evolutionary age of the components acting in the Elongator-dependent modification pathway.
Collapse
Affiliation(s)
- Manfred A Schäck
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, DE 28759 Bremen, Germany
| | - Kim Philipp Jablonski
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, DE 28759 Bremen, Germany
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Stefanie Kellner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, DE 28759 Bremen, Germany
| |
Collapse
|
21
|
Preparation of Internal Standards for 2D-UPLC-MS/MS Quantification of Noncanonical DNA Bases. Methods Mol Biol 2020. [PMID: 32822027 DOI: 10.1007/978-1-0716-0876-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Reliable quantitative analysis of DNA modification using liquid chromatography coupled with tandem mass spectrometry requires stable isotope-labeled internal standards. Only some of them are commercially available. Here we present a method allowing for the synthesis of [13C10,15N2]-5-methyl-2'-deoxycytidine from [13C10,15N2]-2'-deoxythymidine. We also describe an approach for the oxidation of [13C10,15N2]-5-methyl-2'-deoxycytidine and [13C10,15N2]-2'-deoxythymidine with Na2S2O8, leading to the generation of [13C10,15N2]-5-formyl-2'-deoxycytidine, [13C10,15N2]-5-carboxy-2'-deoxycytidine or [13C10,15N2]-5-(hydroxymethyl)-2'-deoxyuridine, correspondingly. Moreover, we provide optimized protocols for the oxidation of [13C5,15N2]-thymine to [13C10,15N2]-5-hydroxymethyluracil, [13C10,15N2]-5-formyluracil, and [13C10,15N2]-5-carboxyuracil using Na2S2O8.
Collapse
|
22
|
Ignatova VV, Kaiser S, Ho JSY, Bing X, Stolz P, Tan YX, Lee CL, Gay FPH, Lastres PR, Gerlini R, Rathkolb B, Aguilar-Pimentel A, Sanz-Moreno A, Klein-Rodewald T, Calzada-Wack J, Ibragimov E, Valenta M, Lukauskas S, Pavesi A, Marschall S, Leuchtenberger S, Fuchs H, Gailus-Durner V, de Angelis MH, Bultmann S, Rando OJ, Guccione E, Kellner SM, Schneider R. METTL6 is a tRNA m 3C methyltransferase that regulates pluripotency and tumor cell growth. SCIENCE ADVANCES 2020; 6:eaaz4551. [PMID: 32923617 PMCID: PMC7449687 DOI: 10.1126/sciadv.aaz4551] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Recently, covalent modifications of RNA, such as methylation, have emerged as key regulators of all aspects of RNA biology and have been implicated in numerous diseases, for instance, cancer. Here, we undertook a combination of in vitro and in vivo screens to test 78 potential methyltransferases for their roles in hepatocellular carcinoma (HCC) cell proliferation. We identified methyltransferase-like protein 6 (METTL6) as a crucial regulator of tumor cell growth. We show that METTL6 is a bona fide transfer RNA (tRNA) methyltransferase, catalyzing the formation of 3-methylcytidine at C32 of specific serine tRNA isoacceptors. Deletion of Mettl6 in mouse stem cells results in changes in ribosome occupancy and RNA levels, as well as impaired pluripotency. In mice, Mettl6 knockout results in reduced energy expenditure. We reveal a previously unknown pathway in the maintenance of translation efficiency with a role in maintaining stem cell self-renewal, as well as impacting tumor cell growth profoundly.
Collapse
Affiliation(s)
- Valentina V. Ignatova
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Steffen Kaiser
- Chemical Faculty, Ludwig-Maximilians Universität München, Munich, Germany
| | - Jessica Sook Yuin Ho
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xinyang Bing
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Paul Stolz
- Department of Biology II, Human Biology and BioImaging, Ludwig-Maximilians Universität München, Munich, Germany
| | - Ying Xim Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chee Leng Lee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Florence Pik Hoon Gay
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Palma Rico Lastres
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Raffaele Gerlini
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Munich, Germany
| | - Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Adrián Sanz-Moreno
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tanja Klein-Rodewald
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Emil Ibragimov
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Magdalena Valenta
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Saulius Lukauskas
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Susan Marschall
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Stefanie Leuchtenberger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Sebastian Bultmann
- Department of Biology II, Human Biology and BioImaging, Ludwig-Maximilians Universität München, Munich, Germany
| | - Oliver J. Rando
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Faculty of Biology, Ludwig-Maximilians Universität München, Munich, Germany
| |
Collapse
|
23
|
Kimura S, Srisuknimit V, Waldor MK. Probing the diversity and regulation of tRNA modifications. Curr Opin Microbiol 2020; 57:41-48. [PMID: 32663792 DOI: 10.1016/j.mib.2020.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 01/21/2023]
Abstract
Transfer RNAs (tRNAs) are non-coding RNAs essential for protein synthesis. tRNAs are heavily decorated with a variety of post-transcriptional modifications (tRNA modifications). Recent methodological advances provide new tools for rapid profiling of tRNA modifications and have led to discoveries of novel modifications and their regulation. Here, we provide an overview of the techniques for investigating tRNA modifications and of the expanding knowledge of their chemistry and regulation.
Collapse
Affiliation(s)
- Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women's Hospital, United States; Department of Microbiology, Harvard Medical School, United States; Howard Hughes Medical Institute, United States.
| | - Veerasak Srisuknimit
- Division of Infectious Diseases, Brigham and Women's Hospital, United States; Department of Microbiology, Harvard Medical School, United States; Howard Hughes Medical Institute, United States
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, United States; Department of Microbiology, Harvard Medical School, United States; Howard Hughes Medical Institute, United States.
| |
Collapse
|
24
|
Hagelskamp F, Borland K, Ramos J, Hendrick AG, Fu D, Kellner S. Broadly applicable oligonucleotide mass spectrometry for the analysis of RNA writers and erasers in vitro. Nucleic Acids Res 2020; 48:e41. [PMID: 32083657 PMCID: PMC7144906 DOI: 10.1093/nar/gkaa091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
RNAs are post-transcriptionally modified by dedicated writer or eraser enzymes that add or remove specific modifications, respectively. Mass spectrometry (MS) of RNA is a useful tool to study the modification state of an oligonucleotide (ON) in a sensitive manner. Here, we developed an ion-pairing reagent free chromatography for positive ion detection of ONs by low- and high-resolution MS, which does not interfere with other types of small compound analyses done on the same instrument. We apply ON-MS to determine the ONs from an RNase T1 digest of in vitro transcribed tRNA, which are purified after ribozyme-fusion transcription by automated size exclusion chromatography. The thus produced tRNAValAAC is substrate of the human tRNA ADAT2/3 enzyme and we confirm the deamination of adenosine to inosine and the formation of tRNAValIACin vitro by ON-MS. Furthermore, low resolution ON-MS is used to monitor the demethylation of ONs containing 1-methyladenosine by bacterial AlkB in vitro. The power of high-resolution ON-MS is demonstrated by the detection and mapping of modified ONs from native total tRNA digested with RNase T1. Overall, we present an oligonucleotide MS method which is broadly applicable to monitor in vitro RNA (de-)modification processes and native RNA.
Collapse
Affiliation(s)
- Felix Hagelskamp
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Kayla Borland
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14627, USA
| | - Alan G Hendrick
- STORM Therapeutics, Moneta Building, Babraham Research Campus, Cambridge CB22 3AT UK
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14627, USA
| | - Stefanie Kellner
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
25
|
The rRNA m 6A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes Dev 2020; 34:715-729. [PMID: 32217665 PMCID: PMC7197354 DOI: 10.1101/gad.333369.119] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Abstract
Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.
Collapse
|
26
|
Meyer B, Immer C, Kaiser S, Sharma S, Yang J, Watzinger P, Weiß L, Kotter A, Helm M, Seitz HM, Kötter P, Kellner S, Entian KD, Wöhnert J. Identification of the 3-amino-3-carboxypropyl (acp) transferase enzyme responsible for acp3U formation at position 47 in Escherichia coli tRNAs. Nucleic Acids Res 2020; 48:1435-1450. [PMID: 31863583 PMCID: PMC7026641 DOI: 10.1093/nar/gkz1191] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
tRNAs from all domains of life contain modified nucleotides. However, even for the experimentally most thoroughly characterized model organism Escherichia coli not all tRNA modification enzymes are known. In particular, no enzyme has been found yet for introducing the acp3U modification at position 47 in the variable loop of eight E. coli tRNAs. Here we identify the so far functionally uncharacterized YfiP protein as the SAM-dependent 3-amino-3-carboxypropyl transferase catalyzing this modification and thereby extend the list of known tRNA modification enzymes in E. coli. Similar to the Tsr3 enzymes that introduce acp modifications at U or m1Ψ nucleotides in rRNAs this protein contains a DTW domain suggesting that acp transfer reactions to RNA nucleotides are a general function of DTW domain containing proteins. The introduction of the acp3U-47 modification in E. coli tRNAs is promoted by the presence of the m7G-46 modification as well as by growth in rich medium. However, a deletion of the enzymes responsible for the modifications at position 46 and 47 in the variable loop of E. coli tRNAs did not lead to a clearly discernible phenotype suggesting that these two modifications play only a minor role in ensuring the proper function of tRNAs in E. coli.
Collapse
Affiliation(s)
- Britta Meyer
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Carina Immer
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Steffen Kaiser
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Sunny Sharma
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany.,Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Jun Yang
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany.,Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Peter Watzinger
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Lena Weiß
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry, Johannes-Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes-Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Hans-Michael Seitz
- Institute for Geosciences, Research Unit Mineralogy, and Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt/M., Germany
| | - Peter Kötter
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany.,Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| |
Collapse
|
27
|
Reichle VF, Petrov DP, Weber V, Jung K, Kellner S. NAIL-MS reveals the repair of 2-methylthiocytidine by AlkB in E. coli. Nat Commun 2019; 10:5600. [PMID: 31811240 PMCID: PMC6898146 DOI: 10.1038/s41467-019-13565-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 01/12/2023] Open
Abstract
RNAs contain post-transcriptional modifications, which fulfill a variety of functions in translation, secondary structure stabilization and cellular stress survival. Here, 2-methylthiocytidine (ms2C) is identified in tRNA of E. coli and P. aeruginosa using NAIL-MS (nucleic acid isotope labeling coupled mass spectrometry) in combination with genetic screening experiments. ms2C is only found in 2-thiocytidine (s2C) containing tRNAs, namely tRNAArgCCG, tRNAArgICG, tRNAArgUCU and tRNASerGCU at low abundances. ms2C is not formed by commonly known tRNA methyltransferases. Instead, we observe its formation in vitro and in vivo during exposure to methylating agents. More than half of the s2C containing tRNA can be methylated to carry ms2C. With a pulse-chase NAIL-MS experiment, the repair mechanism by AlkB dependent sulfur demethylation is demonstrated in vivo. Overall, we describe ms2C as a bacterial tRNA modification and damage product. Its repair by AlkB and other pathways is demonstrated in vivo by our powerful NAIL-MS approach. Bacterial tRNA is modified by thiolation of nucleosides. Here the authors identify 2-methylthiocytidine in bacterial tRNA using nucleic acid isotope labeling coupled mass spectrometry. Exposure to methylating agents converts 2-thiocytidine to 2-methylthiocytidine, which is repaired by demethylase AlkB in vivo.
Collapse
Affiliation(s)
- Valentin F Reichle
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Dimitar P Petrov
- Department of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2-4, 82152, Martinsried, Germany
| | - Verena Weber
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Kirsten Jung
- Department of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2-4, 82152, Martinsried, Germany
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
28
|
Abstract
Although the biological importance of post-transcriptional RNA modifications in gene expression is widely appreciated, methods to directly detect their introduction during RNA biosynthesis are rare and do not easily provide information on the temporal nature of events. Here, we introduce the application of NMR spectroscopy to observe the maturation of tRNAs in cell extracts. By following the maturation of yeast tRNAPhe with time-resolved NMR measurements, we show that modifications are introduced in a defined sequential order, and that the chronology is controlled by cross-talk between modification events. In particular, we show that a strong hierarchy controls the introduction of the T54, Ψ55 and m1A58 modifications in the T-arm, and we demonstrate that the modification circuits identified in yeast extract with NMR also impact the tRNA modification process in living cells. The NMR-based methodology presented here could be adapted to investigate different aspects of tRNA maturation and RNA modifications in general. Transfer RNA (tRNA) is regulated by RNA modifications. Here the authors employ time-resolved NMR to monitor modifications of yeast tRNAPhe in cellular extracts, revealing a sequential order and cross-talk between modifications.
Collapse
|
29
|
Gkatza NA, Castro C, Harvey RF, Heiß M, Popis MC, Blanco S, Bornelöv S, Sajini AA, Gleeson JG, Griffin JL, West JA, Kellner S, Willis AE, Dietmann S, Frye M. Cytosine-5 RNA methylation links protein synthesis to cell metabolism. PLoS Biol 2019; 17:e3000297. [PMID: 31199786 PMCID: PMC6594628 DOI: 10.1371/journal.pbio.3000297] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 06/26/2019] [Accepted: 05/14/2019] [Indexed: 02/02/2023] Open
Abstract
Posttranscriptional modifications in transfer RNA (tRNA) are often critical for normal development because they adapt protein synthesis rates to a dynamically changing microenvironment. However, the precise cellular mechanisms linking the extrinsic stimulus to the intrinsic RNA modification pathways remain largely unclear. Here, we identified the cytosine-5 RNA methyltransferase NSUN2 as a sensor for external stress stimuli. Exposure to oxidative stress efficiently repressed NSUN2, causing a reduction of methylation at specific tRNA sites. Using metabolic profiling, we showed that loss of tRNA methylation captured cells in a distinct catabolic state. Mechanistically, loss of NSUN2 altered the biogenesis of tRNA-derived noncoding fragments (tRFs) in response to stress, leading to impaired regulation of protein synthesis. The intracellular accumulation of a specific subset of tRFs correlated with the dynamic repression of global protein synthesis. Finally, NSUN2-driven RNA methylation was functionally required to adapt cell cycle progression to the early stress response. In summary, we revealed that changes in tRNA methylation profiles were sufficient to specify cellular metabolic states and efficiently adapt protein synthesis rates to cell stress.
Collapse
Affiliation(s)
| | - Cecilia Castro
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Robert F. Harvey
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Heiß
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martyna C. Popis
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Sandra Blanco
- Cancer Cell Signaling and Metabolism Lab, Proteomics Unit CIC bioGUNE, Derio, Spain
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain
| | - Susanne Bornelöv
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Abdulrahim A. Sajini
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Joseph G. Gleeson
- Department of Neurosciences, San Diego School of Medicine, University of California, La Jolla, California, United States of America
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James A. West
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anne E. Willis
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Sabine Dietmann
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michaela Frye
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- German Cancer Center (Deutsches Krebsforschungszntrum), Heidelberg, Germany
| |
Collapse
|