1
|
Huang S, Lou Y, Zheng L. Synergistic effect of split DNA activators of Cas12a with exon-unwinding and induced targeting effect. Nucleic Acids Res 2024; 52:11148-11157. [PMID: 39258555 PMCID: PMC11472069 DOI: 10.1093/nar/gkae766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
CRISPR-Cas12a, an RNA-guided nuclease, has been repurposed for genome editing and molecular diagnostics due to its capability of cis-cleavage on target DNA and trans-cleavage on non-target single-strand DNA (ssDNA). However, the mechanisms underlying the activation of trans-cleavage activity of Cas12a, particularly in the context of split DNA activators, remain poorly understood. We elucidate the synergistic effect of these activators and introduce the concepts of induced targeting effect and exon-unwinding to describe the phenomenon. We demonstrate that upon binding of split DNA activators adjacent to the Protospacer Adjacent Motif (PAM) to the Cas12a ribonucleoprotein (Cas12a-RNP), a ternary complex form that can capture and interact with distal split DNA activators to achieve synergistic effects. Notably, if the distal activator is double-strand DNA (dsDNA), the complex initiates exon-unwinding, facilitating the RNA-guide sequence's access. Our findings provide a mechanistic insight into action of Cas12a and propose a model that could significantly advance our understanding of its function.
Collapse
Affiliation(s)
- Shen Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Laibao Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Sinan S, Appleby NM, Chou CW, Finkelstein IJ, Russell R. Kinetic dissection of pre-crRNA binding and processing by CRISPR-Cas12a. RNA (NEW YORK, N.Y.) 2024; 30:1345-1355. [PMID: 39009379 PMCID: PMC11404446 DOI: 10.1261/rna.080088.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
CRISPR-Cas12a binds and processes a single pre-crRNA during maturation, providing a simple tool for genome editing applications. Here, we constructed a kinetic and thermodynamic framework for pre-crRNA processing by Cas12a in vitro, and we measured the contributions of distinct regions of the pre-crRNA to this reaction. We find that the pre-crRNA binds rapidly and extraordinarily tightly to Cas12a (K d = 0.6 pM), such that pre-crRNA binding is fully rate limiting for processing and therefore determines the specificity of Cas12a for different pre-crRNAs. The guide sequence contributes 10-fold to the binding affinity of the pre-crRNA, while deletion of an upstream sequence has no significant effect. After processing, the mature crRNA remains very tightly bound to Cas12a with a comparable affinity. Strikingly, the affinity contribution of the guide region increases to 600-fold after processing, suggesting that additional contacts are formed and may preorder the crRNA for efficient DNA target recognition. Using a direct competition assay, we find that pre-crRNA-binding specificity is robust to changes in the guide sequence, addition of a 3' extension, and secondary structure within the guide region. However, stable secondary structure in the guide region can strongly inhibit DNA targeting, indicating that care should be taken in crRNA design. Together, our results provide a quantitative framework for pre-crRNA binding and processing by Cas12a and suggest strategies for optimizing crRNA design in genome editing applications.
Collapse
Affiliation(s)
- Selma Sinan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Nathan M Appleby
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Chia-Wei Chou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
3
|
Nalefski EA, Kooistra RM, Parikh I, Hedley S, Rajaraman K, Madan D. Determinants of CRISPR Cas12a nuclease activation by DNA and RNA targets. Nucleic Acids Res 2024; 52:4502-4522. [PMID: 38477377 PMCID: PMC11077072 DOI: 10.1093/nar/gkae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The RNA-guided CRISPR-associated (Cas) enzyme Cas12a cleaves specific double-stranded (ds-) or single-stranded (ss-) DNA targets (in cis), unleashing non-specific ssDNA cleavage (in trans). Though this trans-activity is widely coopted for diagnostics, little is known about target determinants promoting optimal enzyme performance. Using quantitative kinetics, we show formation of activated nuclease proceeds via two steps whereby rapid binding of Cas12a ribonucleoprotein to target is followed by a slower allosteric transition. Activation does not require a canonical protospacer-adjacent motif (PAM), nor is utilization of such PAMs predictive of high trans-activity. We identify several target determinants that can profoundly impact activation times, including bases within the PAM (for ds- but not ssDNA targets) and sequences within and outside those complementary to the spacer, DNA topology, target length, presence of non-specific DNA, and ribose backbone itself, uncovering previously uncharacterized cleavage of and activation by RNA targets. The results provide insight into the mechanism of Cas12a activation, with direct implications on the role of Cas12a in bacterial immunity and for Cas-based diagnostics.
Collapse
Affiliation(s)
| | | | | | | | | | - Damian Madan
- Global Health Labs, Inc, Bellevue, WA 98007, USA
| |
Collapse
|
4
|
Sinan S, Appleby NM, Russell R. Kinetic dissection of pre-crRNA binding and processing by CRISPR-Cas12a. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550589. [PMID: 37546762 PMCID: PMC10402064 DOI: 10.1101/2023.07.25.550589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
CRISPR-Cas12a binds and processes a single pre-crRNA during maturation, providing a simple tool for genome editing applications. Here, we constructed a kinetic and thermodynamic framework for pre-crRNA processing by Cas12a in vitro, and we measured the contributions of distinct regions of the pre-crRNA to this reaction. We find that the pre-crRNA binds rapidly and extraordinarily tightly to Cas12a (Kd = 0.6 pM), such that pre-crRNA binding is fully rate limiting for processing and therefore determines the specificity of Cas12a for different pre-crRNAs. The guide sequence contributes 10-fold to the affinities of both the precursor and mature forms of the crRNA, while deletion of an upstream sequence had no significant effect on affinity of the pre-crRNA. After processing, the mature crRNA remains very tightly bound to Cas12a, with a half-life of ~1 day and a Kd value of 60 pM. Addition of a 5'-phosphoryl group, which is normally lost during the processing reaction as the scissile phosphate, tightens binding of the mature crRNA by ~10-fold by accelerating binding and slowing dissociation. Using a direct competition assay, we found that pre-crRNA binding specificity is robust to other changes in RNA sequence, including tested changes in the guide sequence, addition of a 3' extension, and secondary structure within the guide region. Together our results provide a quantitative framework for pre-crRNA binding and processing by Cas12a and suggest strategies for optimizing crRNA design in some genome editing applications.
Collapse
Affiliation(s)
- Selma Sinan
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712
| | - Nathan M. Appleby
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712
| |
Collapse
|
5
|
Aldag P, Rutkauskas M, Madariaga-Marcos J, Songailiene I, Sinkunas T, Kemmerich F, Kauert D, Siksnys V, Seidel R. Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system. Nat Commun 2023; 14:3654. [PMID: 37339984 PMCID: PMC10281945 DOI: 10.1038/s41467-023-38790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
CRISPR-Cas effector complexes enable the defense against foreign nucleic acids and have recently been exploited as molecular tools for precise genome editing at a target locus. To bind and cleave their target, the CRISPR-Cas effectors have to interrogate the entire genome for the presence of a matching sequence. Here we dissect the target search and recognition process of the Type I CRISPR-Cas complex Cascade by simultaneously monitoring DNA binding and R-loop formation by the complex. We directly quantify the effect of DNA supercoiling on the target recognition probability and demonstrate that Cascade uses facilitated diffusion for its target search. We show that target search and target recognition are tightly linked and that DNA supercoiling and limited 1D diffusion need to be considered when understanding target recognition and target search by CRISPR-Cas enzymes and engineering more efficient and precise variants.
Collapse
Affiliation(s)
- Pierre Aldag
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Marius Rutkauskas
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | | | - Inga Songailiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekis ave. 7, Vilnius, 10257, Lithuania
| | - Tomas Sinkunas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekis ave. 7, Vilnius, 10257, Lithuania
| | - Felix Kemmerich
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Dominik Kauert
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekis ave. 7, Vilnius, 10257, Lithuania.
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
6
|
Bekkouche I, Shishonin AY, Vetcher AA. Recent Development in Biomedical Applications of Oligonucleotides with Triplex-Forming Ability. Polymers (Basel) 2023; 15:858. [PMID: 36850142 PMCID: PMC9964087 DOI: 10.3390/polym15040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive chemical, or as a messenger that enables switching between transcription and replication through the triplex-forming zone. These data are also considered since various illnesses have been linked to the expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some consideration is given to the impact of several low-molecular-weight compounds, including pH on triplex production in vivo. The review is focused on the development of biomedical oligonucleotides with triplexes.
Collapse
Affiliation(s)
- Incherah Bekkouche
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Alexander Y. Shishonin
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| | - Alexandre A. Vetcher
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| |
Collapse
|
7
|
Urbaitis T, Gasiunas G, Young JK, Hou Z, Paulraj S, Godliauskaite E, Juskeviciene MM, Stitilyte M, Jasnauskaite M, Mabuchi M, Robb GB, Siksnys V. A new family of CRISPR-type V nucleases with C-rich PAM recognition. EMBO Rep 2022; 23:e55481. [PMID: 36268581 PMCID: PMC9724661 DOI: 10.15252/embr.202255481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
Most CRISPR-type V nucleases are stimulated to cleave double-stranded (ds) DNA targets by a T-rich PAM, which restricts their targeting range. Here, we identify and characterize a new family of type V RNA-guided nuclease, Cas12l, that exclusively recognizes a C-rich (5'-CCY-3') PAM. The organization of genes within its CRISPR locus is similar to type II-B CRISPR-Cas9 systems, but both sequence analysis and functional studies establish it as a new family of type V effector. Biochemical experiments show that Cas12l nucleases function optimally between 37 and 52°C, depending on the ortholog, and preferentially cut supercoiled DNA. Like other type V nucleases, it exhibits collateral nonspecific ssDNA and ssRNA cleavage activity that is triggered by ssDNA or dsDNA target recognition. Finally, we show that one family member, Asp2Cas12l, functions in a heterologous cellular environment, altogether, suggesting that this new group of CRISPR-associated nucleases may be harnessed as genome editing reagents.
Collapse
Affiliation(s)
- Tomas Urbaitis
- CasZymeVilniusLithuania,Institute of BiotechnologyVilnius UniversityVilniusLithuania
| | | | | | - Zhenglin Hou
- Farming Solutions & DigitalCorteva Agriscience™JohnstonIAUSA
| | | | | | | | - Migle Stitilyte
- CasZymeVilniusLithuania,Institute of BiotechnologyVilnius UniversityVilniusLithuania
| | - Monika Jasnauskaite
- CasZymeVilniusLithuania,Present address:
LSC‐EMBL Partnership Institute for Genome Technologies Editing, Life Sciences CenterVilnius UniversityVilniusLithuania
| | | | | | - Virginijus Siksnys
- CasZymeVilniusLithuania,Institute of BiotechnologyVilnius UniversityVilniusLithuania
| |
Collapse
|
8
|
Wörle E, Newman A, D’Silva J, Burgio G, Grohmann D. Allosteric activation of CRISPR-Cas12a requires the concerted movement of the bridge helix and helix 1 of the RuvC II domain. Nucleic Acids Res 2022; 50:10153-10168. [PMID: 36107767 PMCID: PMC9508855 DOI: 10.1093/nar/gkac767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Nucleases derived from the prokaryotic defense system CRISPR-Cas are frequently re-purposed for gene editing and molecular diagnostics. Hence, an in-depth understanding of the molecular mechanisms of these enzymes is of crucial importance. We focused on Cas12a from Francisella novicida (FnCas12a) and investigated the functional role of helix 1, a structural element that together with the bridge helix (BH) connects the recognition and the nuclease lobes of FnCas12a. Helix 1 is structurally connected to the lid domain that opens upon DNA target loading thereby activating the active site of FnCas12a. We probed the structural states of FnCas12a variants altered in helix 1 and/or the bridge helix using single-molecule FRET measurements and assayed the pre-crRNA processing, cis- and trans-DNA cleavage activity. We show that helix 1 and not the bridge helix is the predominant structural element that confers conformational stability of FnCas12a. Even small perturbations in helix 1 lead to a decrease in DNA cleavage activity while the structural integrity is not affected. Our data, therefore, implicate that the concerted remodeling of helix 1 and the bridge helix upon DNA binding is structurally linked to the opening of the lid and therefore involved in the allosteric activation of the active site.
Collapse
Affiliation(s)
- Elisabeth Wörle
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Anthony Newman
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Jovita D’Silva
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Gaetan Burgio
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Dina Grohmann
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Naqvi MM, Lee L, Montaguth OET, Diffin FM, Szczelkun MD. CRISPR-Cas12a-mediated DNA clamping triggers target-strand cleavage. Nat Chem Biol 2022; 18:1014-1022. [PMID: 35836018 PMCID: PMC9395263 DOI: 10.1038/s41589-022-01082-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 06/08/2022] [Indexed: 01/19/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a is widely used for genome editing and diagnostics, so it is important to understand how RNA-guided DNA recognition activates the cleavage of the target strand (TS) following non-target-strand (NTS) cleavage. Here we used single-molecule magnetic tweezers, gel-based assays and nanopore sequencing to explore DNA unwinding and cleavage. In addition to dynamic and heterogenous R-loop formation, we also directly observed transient double-stranded DNA unwinding downstream of the 20-bp heteroduplex and, following NTS cleavage, formation of a hyperstable 'clamped' Cas12a-DNA intermediate necessary for TS cleavage. Annealing of a 4-nucleotide 3' CRISPR RNA overhang to the unwound TS downstream of the heteroduplex inhibited clamping and slowed TS cleavage by ~16-fold. Alanine substitution of a conserved aromatic amino acid in the REC2 subdomain that normally caps the R-loop relieved this inhibition but favoured stabilisation of unwound states, suggesting that the REC2 subdomain regulates access of the 3' CRISPR RNA to downstream DNA.
Collapse
Affiliation(s)
- Mohsin M Naqvi
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Laura Lee
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Oscar E Torres Montaguth
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Fiona M Diffin
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
10
|
Li J, Luo T, He Y, Liu H, Deng Z, Bu J, Long X, Zhong S, Yang Y. Discovery of the Rnase activity of CRISPR-Cas12a and its distinguishing cleavage efficiency on various substrates. Chem Commun (Camb) 2022; 58:2540-2543. [PMID: 35099480 DOI: 10.1039/d1cc06295f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We, herein, indicated for the first time the Rnase activities of LbCas12a on linear ssRNA above 11 bases, and hairpin RNA substrates. Meanwhile, the LbCas12a bound to ssDNA or ssRNA exhibited different cleavage efficiencies on various substrates, including short ssDNA, hairpin DNA, linear ssRNA and hairpin RNA. With hairpin DNA as a reporter, we attained a detection limit of 5 pM and 50 pM for the ssDNA and ssRNA targets, respectively. We believe that these findings will pave a new avenue for expanding the reporter toolbox for Cas12a-based diagnostics in biosensing and biochemistry.
Collapse
Affiliation(s)
- Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Tong Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Yao He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - ZhiWei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Xi Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| |
Collapse
|
11
|
Losito M, Smith QM, Newton MD, Cuomo ME, Rueda DS. Cas12a target search and cleavage on force-stretched DNA. Phys Chem Chem Phys 2021; 23:26640-26644. [PMID: 34494640 PMCID: PMC8653695 DOI: 10.1039/d1cp03408a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Using optical tweezers, we investigate target search and cleavage by CRISPR-Cas12a on force-stretched λ-DNA. Cas12a uses fast, one-dimensional hopping to locate its target. Binding and cleavage occur rapidly and specifically at low forces (≤5 pN), with a 1.8 nm rate-limiting conformational change. Mechanical distortion slows diffusion, increases off-target binding but hinders cleavage.
Collapse
Affiliation(s)
- Marialucrezia Losito
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
- Discovery Sciences, AstraZeneca, Cambridge CB4 0WG, UK
| | - Quentin M Smith
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
| | - Matthew D Newton
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
| | | | - David S Rueda
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
| |
Collapse
|
12
|
Torres Montaguth OE, Cross SJ, Ingram KWA, Lee L, Diffin FM, Szczelkun MD. ENDO-Pore: high-throughput linked-end mapping of single DNA cleavage events using nanopore sequencing. Nucleic Acids Res 2021; 49:e118. [PMID: 34417616 PMCID: PMC8599736 DOI: 10.1093/nar/gkab727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
Mapping the precise position of DNA cleavage events plays a key role in determining the mechanism and function of endonucleases. ENDO-Pore is a high-throughput nanopore-based method that allows the time resolved mapping single molecule DNA cleavage events in vitro. Following linearisation of a circular DNA substrate by the endonuclease, a resistance cassette is ligated recording the position of the cleavage event. A library of single cleavage events is constructed and subjected to rolling circle amplification to generate concatemers. These are sequenced and used to produce accurate consensus sequences. To identify the cleavage site(s), we developed CSI (Cleavage Site Investigator). CSI recognizes the ends of the cassette ligated into the cleaved substrate and triangulates the position of the dsDNA break. We firstly benchmarked ENDO-Pore using Type II restriction endonucleases. Secondly, we analysed the effect of crRNA length on the cleavage pattern of CRISPR Cas12a. Finally, we mapped the time-resolved DNA cleavage by the Type ISP restriction endonuclease LlaGI that introduces random double-strand breaks into its DNA substrates.
Collapse
Affiliation(s)
- Oscar E Torres Montaguth
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Stephen J Cross
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Kincaid W A Ingram
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Laura Lee
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Fiona M Diffin
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
13
|
Obtaining Specific Sequence Tags for Yersinia pestis and Visually Detecting Them Using the CRISPR-Cas12a System. Pathogens 2021; 10:pathogens10050562. [PMID: 34066578 PMCID: PMC8148545 DOI: 10.3390/pathogens10050562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Three worldwide historical plague pandemics resulted in millions of deaths. Yersinia pestis, the etiologic agent of plague, is also a potential bioterrorist weapon. Simple, rapid, and specific detection of Y. pestis is important to prevent and control plague. However, the high similarity between Y. pestis and its sister species within the same genus makes detection work problematic. Here, the genome sequence from the Y. pestis CO92 strain was electronically separated into millions of fragments. These fragments were analyzed and compared with the genome sequences of 539 Y. pestis strains and 572 strains of 20 species within the Yersinia genus. Altogether, 97 Y. pestis-specific tags containing two or more single nucleotide polymorphism sites were screened out. These 97 tags efficiently distinguished Y. pestis from all other closely related species. We chose four of these tags to design a Cas12a-based detection system. PCR–fluorescence methodology was used to test the specificity of these tags, and the results showed that the fluorescence intensity produced by Y. pestis was significantly higher than that of non-Y. pestis (p < 0.0001). We then employed recombinase polymerase amplification and lateral flow dipsticks to visualize the results. Our newly developed plasmid-independent, species-specific library of tags completely and effectively screened chromosomal sequences. The detection limit of our four-tag Cas12a system reached picogram levels.
Collapse
|
14
|
Strohkendl I, Saifuddin FA, Gibson BA, Rosen MK, Russell R, Finkelstein IJ. Inhibition of CRISPR-Cas12a DNA targeting by nucleosomes and chromatin. SCIENCE ADVANCES 2021; 7:7/11/eabd6030. [PMID: 33692102 PMCID: PMC7946368 DOI: 10.1126/sciadv.abd6030] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/22/2021] [Indexed: 06/10/2023]
Abstract
Genome engineering nucleases must access chromatinized DNA. Here, we investigate how AsCas12a cleaves DNA within human nucleosomes and phase-condensed nucleosome arrays. Using quantitative kinetics approaches, we show that dynamic nucleosome unwrapping regulates target accessibility to Cas12a and determines the extent to which both steps of binding-PAM recognition and R-loop formation-are inhibited by the nucleosome. Relaxing DNA wrapping within the nucleosome by reducing DNA bendability, adding histone modifications, or introducing target-proximal dCas9 enhances DNA cleavage rates over 10-fold. Unexpectedly, Cas12a readily cleaves internucleosomal linker DNA within chromatin-like, phase-separated nucleosome arrays. DNA targeting is reduced only ~5-fold due to neighboring nucleosomes and chromatin compaction. This work explains the observation that on-target cleavage within nucleosomes occurs less often than off-target cleavage within nucleosome-depleted genomic regions in cells. We conclude that nucleosome unwrapping regulates accessibility to CRISPR-Cas nucleases and propose that increasing nucleosome breathing dynamics will improve DNA targeting in eukaryotic cells.
Collapse
Affiliation(s)
- Isabel Strohkendl
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Fatema A Saifuddin
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | - Bryan A Gibson
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rick Russell
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
15
|
Pyne ALB, Noy A, Main KHS, Velasco-Berrelleza V, Piperakis MM, Mitchenall LA, Cugliandolo FM, Beton JG, Stevenson CEM, Hoogenboom BW, Bates AD, Maxwell A, Harris SA. Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides. Nat Commun 2021; 12:1053. [PMID: 33594049 PMCID: PMC7887228 DOI: 10.1038/s41467-021-21243-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
In the cell, DNA is arranged into highly-organised and topologically-constrained (supercoiled) structures. It remains unclear how this supercoiling affects the detailed double-helical structure of DNA, largely because of limitations in spatial resolution of the available biophysical tools. Here, we overcome these limitations, by a combination of atomic force microscopy (AFM) and atomistic molecular dynamics (MD) simulations, to resolve structures of negatively-supercoiled DNA minicircles at base-pair resolution. We observe that negative superhelical stress induces local variation in the canonical B-form DNA structure by introducing kinks and defects that affect global minicircle structure and flexibility. We probe how these local and global conformational changes affect DNA interactions through the binding of triplex-forming oligonucleotides to DNA minicircles. We show that the energetics of triplex formation is governed by a delicate balance between electrostatics and bonding interactions. Our results provide mechanistic insight into how DNA supercoiling can affect molecular recognition, that may have broader implications for DNA interactions with other molecular species.
Collapse
Affiliation(s)
- Alice L B Pyne
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK.
- London Centre for Nanotechnology, University College London, London, UK.
| | - Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York, UK.
| | - Kavit H S Main
- London Centre for Nanotechnology, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | | | - Michael M Piperakis
- Department of Biological Chemistry, John Innes Centre, Norwich, UK
- Department of Chemistry, University of Reading, Whiteknights, Reading, UK
| | | | - Fiorella M Cugliandolo
- Department of Biological Chemistry, John Innes Centre, Norwich, UK
- Department of Pathology, Division of Immunology, University of Cambridge, Cambridge, UK
| | - Joseph G Beton
- London Centre for Nanotechnology, University College London, London, UK
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | | | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Andrew D Bates
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich, UK
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
16
|
Duprey A, Groisman EA. FEDS: a Novel Fluorescence-Based High-Throughput Method for Measuring DNA Supercoiling In Vivo. mBio 2020; 11:e01053-20. [PMID: 32723920 PMCID: PMC7387798 DOI: 10.1128/mbio.01053-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/24/2020] [Indexed: 11/20/2022] Open
Abstract
DNA supercoiling (DS) is essential for life because it controls critical processes, including transcription, replication, and recombination. Current methods to measure DNA supercoiling in vivo are laborious and unable to examine single cells. Here, we report a method for high-throughput measurement of bacterial DNA supercoiling in vivoFluorescent evaluation of DNA supercoiling (FEDS) utilizes a plasmid harboring the gene for a green fluorescent protein transcribed by a discovered promoter that responds exclusively to DNA supercoiling and the gene for a red fluorescent protein transcribed by a constitutive promoter as the internal standard. Using FEDS, we uncovered single-cell heterogeneity in DNA supercoiling and established that, surprisingly, population-level decreases in DNA supercoiling result from a low-mean/high-variance DNA supercoiling subpopulation rather than from a homogeneous shift in supercoiling of the whole population. In addition, we identified a regulatory loop in which a gene that decreases DNA supercoiling is transcriptionally repressed when DNA supercoiling increases.IMPORTANCE DNA represents the chemical support of genetic information in all forms of life. In addition to its linear sequence of nucleotides, it bears critical information in its structure. This information, called DNA supercoiling, is central to all fundamental DNA processes, such as transcription and replication, and defines cellular physiology. Unlike reading of a nucleotide sequence, DNA supercoiling determinations have been laborious. We have now developed a method for rapid measurement of DNA supercoiling and established its utility by identifying a novel regulator of DNA supercoiling in the bacterium Salmonella enterica as well as behaviors that could not have been discovered with current methods.
Collapse
Affiliation(s)
- Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
17
|
Mullally G, van Aelst K, Naqvi MM, Diffin FM, Karvelis T, Gasiunas G, Siksnys V, Szczelkun MD. 5' modifications to CRISPR-Cas9 gRNA can change the dynamics and size of R-loops and inhibit DNA cleavage. Nucleic Acids Res 2020; 48:6811-6823. [PMID: 32496535 PMCID: PMC7337959 DOI: 10.1093/nar/gkaa477] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
A key aim in exploiting CRISPR-Cas is gRNA engineering to introduce additional functionalities, ranging from individual nucleotide changes that increase efficiency of on-target binding to the inclusion of larger functional RNA aptamers or ribonucleoproteins (RNPs). Cas9-gRNA interactions are crucial for complex assembly, but several distinct regions of the gRNA are amenable to modification. We used in vitro ensemble and single-molecule assays to assess the impact of gRNA structural alterations on RNP complex formation, R-loop dynamics, and endonuclease activity. Our results indicate that RNP formation was unaffected by any of our modifications. R-loop formation and DNA cleavage activity were also essentially unaffected by modification of the Upper Stem, first Hairpin and 3' end. In contrast, we found that 5' additions of only two or three nucleotides could reduce R-loop formation and cleavage activity of the RuvC domain relative to a single nucleotide addition. Such modifications are a common by-product of in vitro transcribed gRNA. We also observed that addition of a 20 nt RNA hairpin to the 5' end of a gRNA still supported RNP formation but produced a stable ∼9 bp R-loop that could not activate DNA cleavage. Consideration of these observations will assist in successful gRNA design.
Collapse
Affiliation(s)
- Grace Mullally
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- BrisSynBio, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| | - Kara van Aelst
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Mohsin M Naqvi
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Fiona M Diffin
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - Giedrius Gasiunas
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
- CasZyme, Vilnius, Lithuania
| | | | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- BrisSynBio, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
18
|
Murugan K, Seetharam AS, Severin AJ, Sashital DG. CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects. J Biol Chem 2020; 295:5538-5553. [PMID: 32161115 PMCID: PMC7186167 DOI: 10.1074/jbc.ra120.012933] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cas12a (Cpf1) is an RNA-guided endonuclease in the bacterial type V-A CRISPR-Cas anti-phage immune system that can be repurposed for genome editing. Cas12a can bind and cut dsDNA targets with high specificity in vivo, making it an ideal candidate for expanding the arsenal of enzymes used in precise genome editing. However, this reported high specificity contradicts Cas12a's natural role as an immune effector against rapidly evolving phages. Here, we employed high-throughput in vitro cleavage assays to determine and compare the native cleavage specificities and activities of three different natural Cas12a orthologs (FnCas12a, LbCas12a, and AsCas12a). Surprisingly, we observed pervasive sequence-specific nicking of randomized target libraries, with strong nicking of DNA sequences containing up to four mismatches in the Cas12a-targeted DNA-RNA hybrid sequences. We also found that these nicking and cleavage activities depend on mismatch type and position and vary with Cas12a ortholog and CRISPR RNA sequence. Our analysis further revealed robust nonspecific nicking of dsDNA when Cas12a is activated by binding to a target DNA. Together, our findings reveal that Cas12a has multiple nicking activities against dsDNA substrates and that these activities vary among different Cas12a orthologs.
Collapse
Affiliation(s)
- Karthik Murugan
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011; Molecular, Cellular, and Developmental Biology Interdepartmental Program, Iowa State University, Ames, Iowa 50011
| | - Arun S Seetharam
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, Iowa 50011
| | - Andrew J Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, Iowa 50011
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011; Molecular, Cellular, and Developmental Biology Interdepartmental Program, Iowa State University, Ames, Iowa 50011.
| |
Collapse
|
19
|
Ivanov IE, Wright AV, Cofsky JC, Aris KDP, Doudna JA, Bryant Z. Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling. Proc Natl Acad Sci U S A 2020; 117:5853-5860. [PMID: 32123105 PMCID: PMC7084090 DOI: 10.1073/pnas.1913445117] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CRISPR-Cas9 nuclease has been widely repurposed as a molecular and cell biology tool for its ability to programmably target and cleave DNA. Cas9 recognizes its target site by unwinding the DNA double helix and hybridizing a 20-nucleotide section of its associated guide RNA to one DNA strand, forming an R-loop structure. A dynamic and mechanical description of R-loop formation is needed to understand the biophysics of target searching and develop rational approaches for mitigating off-target activity while accounting for the influence of torsional strain in the genome. Here we investigate the dynamics of Cas9 R-loop formation and collapse using rotor bead tracking (RBT), a single-molecule technique that can simultaneously monitor DNA unwinding with base-pair resolution and binding of fluorescently labeled macromolecules in real time. By measuring changes in torque upon unwinding of the double helix, we find that R-loop formation and collapse proceed via a transient discrete intermediate, consistent with DNA:RNA hybridization within an initial seed region. Using systematic measurements of target and off-target sequences under controlled mechanical perturbations, we characterize position-dependent effects of sequence mismatches and show how DNA supercoiling modulates the energy landscape of R-loop formation and dictates access to states competent for stable binding and cleavage. Consistent with this energy landscape model, in bulk experiments we observe promiscuous cleavage under physiological negative supercoiling. The detailed description of DNA interrogation presented here suggests strategies for improving the specificity and kinetics of Cas9 as a genome engineering tool and may inspire expanded applications that exploit sensitivity to DNA supercoiling.
Collapse
Affiliation(s)
- Ivan E Ivanov
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Joshua C Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | | | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305;
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
20
|
Swarts DC. Making the cut(s): how Cas12a cleaves target and non-target DNA. Biochem Soc Trans 2019; 47:1499-1510. [PMID: 31671185 DOI: 10.1042/bst20190564] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
CRISPR-Cas12a (previously named Cpf1) is a prokaryotic deoxyribonuclease that can be programmed with an RNA guide to target complementary DNA sequences. Upon binding of the target DNA, Cas12a induces a nick in each of the target DNA strands, yielding a double-stranded DNA break. In addition to inducing cis-cleavage of the targeted DNA, target DNA binding induces trans-cleavage of non-target DNA. As such, Cas12a-RNA guide complexes can provide sequence-specific immunity against invading nucleic acids such as bacteriophages and plasmids. Akin to CRISPR-Cas9, Cas12a has been repurposed as a genetic tool for programmable genome editing and transcriptional control in both prokaryotic and eukaryotic cells. In addition, its trans-cleavage activity has been applied for high-sensitivity nucleic acid detection. Despite the demonstrated value of Cas12a for these applications, the exact molecular mechanisms of both cis- and trans-cleavage of DNA were not completely understood. Recent studies have revealed mechanistic details of Cas12a-mediates DNA cleavage: base pairing of the RNA guide and the target DNA induces major conformational changes in Cas12a. These conformational changes render Cas12a in a catalytically activated state in which it acts as deoxyribonuclease. This deoxyribonuclease activity mediates cis-cleavage of the displaced target DNA strand first, and the RNA guide-bound target DNA strand second. As Cas12a remains in the catalytically activated state after cis-cleavage, it subsequently demonstrates trans-cleavage of non-target DNA. Here, I review the mechanistic details of Cas12a-mediated cis- and trans-cleavage of DNA. In addition, I discuss how bacteriophage-derived anti-CRISPR proteins can inhibit Cas12a activity.
Collapse
Affiliation(s)
- Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
21
|
Dorman CJ, Ní Bhriain N. CRISPR-Cas, DNA Supercoiling, and Nucleoid-Associated Proteins. Trends Microbiol 2019; 28:19-27. [PMID: 31519332 DOI: 10.1016/j.tim.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
In this opinion article we highlight links between the H-NS nucleoid-associated protein, variable DNA topology, the regulation of CRISPR-cas locus expression, CRISPR-Cas activity, and the recruitment of novel genetic information by the CRISPR array. We propose that the requirement that the invading mobile genetic element be negatively supercoiled limits effective CRISPR action to a window in the bacterial growth cycle when DNA topology is optimal, and that this same window is used for the efficient integration of new spacer sequences at the CRISPR array. H-NS silences CRISPR promoters, and we propose that antagonists of H-NS, such as the LeuO transcription factor, provide a basis for a stochastic genetic switch that acts at random in each cell in the bacterial population. In addition, we wish to propose a mechanism by which mobile genetic elements can suppress CRISPR-cas transcription using H-NS homologues. Although the individual components of this network are known, we propose a new model in which they are integrated and linked to the physiological state of the bacterium. The model provides a basis for cell-to-cell variation in the expression and performance of CRISPR systems in bacterial populations.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Niamh Ní Bhriain
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|