1
|
AlSabah AA, Alsalmi M, Massie R, Bilodeau MC, Campeau PM, McGraw S, D'Agostino MD. An adult patient with Tatton-Brown-Rahman syndrome caused by a novel DNMT3A variant and axonal polyneuropathy. Am J Med Genet A 2024; 194:e63484. [PMID: 38041495 DOI: 10.1002/ajmg.a.63484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Tatton-Brown-Rahman syndrome (TBRS) is a rare autosomal dominant overgrowth syndrome first reported in 2014 and caused by pathogenic variants in the DNA methyltransferase 3A (DNMT3A) gene. All individuals reported to date share a phenotype of somatic overgrowth, dysmorphic features, and intellectual disability. Peripheral neuropathy was not described in these cases. We report an adult patient with TBRS caused by a novel pathogenic DNMT3A variant (NM_175629.2: c.2036G>A, p.(Arg688His)) harboring an axonal length-dependent sensory-motor polyneuropathy. Extensive laboratory and molecular genetic work-up failed to identify alternative causes for this patient's neuropathy. We propose that axonal neuropathy may be a novel, age-dependent phenotypic feature in adults with TBRS and suggest that this syndrome should be considered in the differential diagnosis of patients with overgrowth, cognitive and psychiatric difficulties, and peripheral neuropathy.
Collapse
Affiliation(s)
- Al-Alya AlSabah
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Mohammed Alsalmi
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Rami Massie
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Marie-Claude Bilodeau
- Clinique de Psychiatrie, Santé Mentale et Dépendances, CIUSSS MCQ, Hôpital Sainte-Croix, Drummondville, Quebec, Canada
| | - Philippe M Campeau
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Serge McGraw
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Université de Montreal, Montreal, Quebec, Canada
| | - Maria Daniela D'Agostino
- Division of Medical Genetics, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Switzer RL, Hartman ZJ, Hewett GR, Carroll CF. Disease-Associated Mutation A554V Disrupts Normal Autoinhibition of DNMT1. DNA 2023; 3:119-133. [PMID: 37663147 PMCID: PMC10470860 DOI: 10.3390/dna3030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
DNA methyltransferase 1 (DNMT1) is the enzyme primarily responsible for propagation of the methylation pattern in cells. Mutations in DNMT1 have been linked to the development of adult-onset neurodegenerative disorders; these disease-associated mutations occur in the regulatory replication foci-targeting sequence (RFTS) domain of the protein. The RFTS domain is an endogenous inhibitor of DNMT1 activity that binds to the active site and prevents DNA binding. Here, we examine the impact of the disease-associated mutation A554V on normal RFTS-mediated inhibition of DNMT1. Wild-type and mutant proteins were expressed and purified to homogeneity for biochemical characterization. The mutation increased DNA binding affinity ~8-fold. In addition, the mutant enzyme exhibited increased DNA methylation activity. Circular dichroism (CD) spectroscopy revealed that the mutation does not significantly impact the secondary structure or relative thermal stability of the isolated RFTS domain. However, the mutation resulted in changes in the CD spectrum in the context of the larger protein; a decrease in relative thermal stability was also observed. Collectively, this evidence suggests that A554V disrupts normal RFTS-mediated autoinhibition of DNMT1, resulting in a hyperactive mutant enzyme. While the disease-associated mutation does not significantly impact the isolated RFTS domain, the mutation results in a weakening of the interdomain stabilizing interactions generating a more open, active conformation of DNMT1. Hyperactive mutant DNMT1 could be responsible for the increased DNA methylation observed in affected individuals.
Collapse
Affiliation(s)
| | - Zach J. Hartman
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Geoffrey R. Hewett
- Program in Cell Biology/Biochemistry, Bucknell University, Lewisburg, PA 17837, USA
| | - Clara F. Carroll
- Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
| |
Collapse
|
3
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Germline Abnormalities in DNA Methylation and Histone Modification and Associated Cancer Risk. Curr Hematol Malig Rep 2022; 17:82-93. [PMID: 35653077 DOI: 10.1007/s11899-022-00665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Somatic mutations in DNA methyltransferases and other DNA methylation associated genes have been found in a wide variety of cancers. Germline mutations in these genes have been associated with several rare hereditary disorders. Among the described germline/congenital disorders, neurological dysfunction and/or growth abnormalities appear to be a common phenotype. Here, we outline known germline abnormalities and examine the cancer risks associated with these mutations. RECENT FINDINGS The increased use and availability of sequencing techniques in the clinical setting has expanded the identification of germline abnormalities involving DNA methylation machinery. This has provided additional cases to study these rare hereditary disorders and their predisposition to cancer. Studying these syndromes may offer an opportunity to better understand the contribution of these genes in cancer development.
Collapse
|
5
|
Wang W, Zhao X, Shao Y, Duan X, Wang Y, Li J, Li J, Li D, Li X, Wong J. Mutation-induced DNMT1 cleavage drives neurodegenerative disease. SCIENCE ADVANCES 2021; 7:eabe8511. [PMID: 34516921 PMCID: PMC8442919 DOI: 10.1126/sciadv.abe8511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Specific mutations within the replication foci targeting sequence (RFTS) domain of human DNMT1 are causative of two types of adult-onset neurodegenerative diseases, HSAN1E and ADCA-DN, but the underlying mechanisms are largely unknown. We generated Dnmt1-M1 and Dnmt1-M2 knock-in mouse models that are equivalent to Y495C and D490E-P491Y mutation in patients with HSAN1E, respectively. We found that both mutant heterozygous mice are viable, have reduced DNMT1 proteins, and exhibit neurodegenerative phenotypes including impaired learning and memory. The homozygous mutants die around embryonic day 10.5 and are apparently devoid of DNMT1 proteins. We present the evidence that the mutant DNMT1 proteins are unstable, most likely because of cleavage within RFTS domain by an unidentified proteinase. Moreover, we provide evidence that the RFTS mutation–induced cleavage of DNMT1, but not mutation itself, is responsible for functional defect of mutant DNMT1. Our study shed light on the mechanism of DNMT1 RFTS mutation causing neurodegenerative diseases.
Collapse
Affiliation(s)
- Wencai Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Xingsen Zhao
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
- National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yanjiao Shao
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoya Duan
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yaling Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jialun Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xuekun Li
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
- National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| |
Collapse
|
6
|
Zhu Y, Ye F, Zhou Z, Liu W, Liang Z, Hu G. Insights into Conformational Dynamics and Allostery in DNMT1-H3Ub/USP7 Interactions. Molecules 2021; 26:molecules26175153. [PMID: 34500587 PMCID: PMC8434485 DOI: 10.3390/molecules26175153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
DNA methyltransferases (DNMTs) including DNMT1 are a conserved family of cytosine methylases that play crucial roles in epigenetic regulation. The versatile functions of DNMT1 rely on allosteric networks between its different interacting partners, emerging as novel therapeutic targets. In this work, based on the modeling structures of DNMT1-ubiquitylated H3 (H3Ub)/ubiquitin specific peptidase 7 (USP7) complexes, we have used a combination of elastic network models, molecular dynamics simulations, structural residue perturbation, network modeling, and pocket pathway analysis to examine their molecular mechanisms of allosteric regulation. The comparative intrinsic and conformational dynamics analysis of three DNMT1 systems has highlighted the pivotal role of the RFTS domain as the dynamics hub in both intra- and inter-molecular interactions. The site perturbation and network modeling approaches have revealed the different and more complex allosteric interaction landscape in both DNMT1 complexes, involving the events caused by mutational hotspots and post-translation modification sites through protein-protein interactions (PPIs). Furthermore, communication pathway analysis and pocket detection have provided new mechanistic insights into molecular mechanisms underlying quaternary structures of DNMT1 complexes, suggesting potential targeting pockets for PPI-based allosteric drug design.
Collapse
Affiliation(s)
- Yu Zhu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Ziyun Zhou
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
| | - Wanlin Liu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
- Correspondence: (Z.L.); (G.H.)
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
- Correspondence: (Z.L.); (G.H.)
| |
Collapse
|
7
|
Khrabrova DA, Yakubovskaya MG, Gromova ES. AML-Associated Mutations in DNA Methyltransferase DNMT3A. BIOCHEMISTRY (MOSCOW) 2021; 86:307-318. [PMID: 33838631 DOI: 10.1134/s000629792103007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In mammals, DNA methylation is an essential epigenetic modification necessary for the maintenance of genome stability, regulation of gene expression, and other processes. Carcinogenesis is accompanied by multiple changes in the DNA methylation pattern and DNA methyltransferase (DNMT) genes; these changes are often associated with poor disease prognosis. Human DNA methyltransferase DNMT3A is responsible for de novo DNA methylation. Missense mutations in the DNMT3A gene occur frequently at the early stages of tumor development and are often observed in hematologic malignances, especially in acute myeloid leukemia (AML), with a prevalence of the R882H mutation. This mutation is the only one that has been extensively studied using both model DNA substrates and cancer cell lines. Biochemical characterization of other DNMT3A mutants is necessary to assess their potential effects on the DNMT3A functioning. In this review, we describe DNMT3A mutations identified in AML with special emphasis on the missense mutations in the DNMT3A catalytic domain. The impact of R882H and less common missense mutations on the DNMT3A activity toward model DNA substrates and in cancer cell lines is discussed together with the underlying molecular mechanisms. Understanding general features of these mechanisms will be useful for further development of novel approaches for early diagnostics of hematologic diseases and personalized cancer therapy.
Collapse
Affiliation(s)
- Dariya A Khrabrova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Marianna G Yakubovskaya
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Elizaveta S Gromova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
8
|
Petryk N, Bultmann S, Bartke T, Defossez PA. Staying true to yourself: mechanisms of DNA methylation maintenance in mammals. Nucleic Acids Res 2021; 49:3020-3032. [PMID: 33300031 PMCID: PMC8034647 DOI: 10.1093/nar/gkaa1154] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
DNA methylation is essential to development and cellular physiology in mammals. Faulty DNA methylation is frequently observed in human diseases like cancer and neurological disorders. Molecularly, this epigenetic mark is linked to other chromatin modifications and it regulates key genomic processes, including transcription and splicing. Each round of DNA replication generates two hemi-methylated copies of the genome. These must be converted back to symmetrically methylated DNA before the next S-phase, or the mark will fade away; therefore the maintenance of DNA methylation is essential. Mechanistically, the maintenance of this epigenetic modification takes place during and after DNA replication, and occurs within the very dynamic context of chromatin re-assembly. Here, we review recent discoveries and unresolved questions regarding the mechanisms, dynamics and fidelity of DNA methylation maintenance in mammals. We also discuss how it could be regulated in normal development and misregulated in disease.
Collapse
Affiliation(s)
- Nataliya Petryk
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, F-75013 Paris, France
| | - Sebastian Bultmann
- Department of Biology II, Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | |
Collapse
|
9
|
Chen J, Liu J, Jiang J, Qian S, Song J, Kabara R, Delo I, Serino G, Liu F, Hua Z, Zhong X. F-box protein CFK1 interacts with and degrades de novo DNA methyltransferase in Arabidopsis. THE NEW PHYTOLOGIST 2021; 229:3303-3317. [PMID: 33216996 PMCID: PMC7902366 DOI: 10.1111/nph.17103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/16/2020] [Indexed: 05/07/2023]
Abstract
DNA methylation plays crucial roles in cellular development and stress responses through gene regulation and genome stability control. Precise regulation of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), the de novo Arabidopsis DNA methyltransferase, is crucial to maintain DNA methylation homeostasis to ensure genome integrity. Compared with the extensive studies on DRM2 targeting mechanisms, little information is known regarding the quality control of DRM2 itself. Here, we conducted yeast two-hybrid screen assay and identified an E3 ligase, COP9 INTERACTING F-BOX KELCH 1 (CFK1), as a novel DRM2-interacting partner and targets DRM2 for degradation via the ubiquitin-26S proteasome pathway in Arabidopsis thaliana. We also performed whole genome bisulfite sequencing (BS-seq) to determine the biological significance of CFK1-mediated DRM2 degradation. Loss-of-function CFK1 leads to increased DRM2 protein abundance and overexpression of CFK1 showed reduced DRM2 protein levels. Consistently, CFK1 overexpression induces genome-wide CHH hypomethylation and transcriptional de-repression at specific DRM2 target loci. This study uncovered a distinct mechanism regulating de novo DNA methyltransferase by CFK1 to control DNA methylation level.
Collapse
Affiliation(s)
- Jiani Chen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Jie Liu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Jianjun Jiang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Shuiming Qian
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Jingwen Song
- Department of Environmental and Plant Biology & Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Rachel Kabara
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Isabel Delo
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Università di Roma, 00185 Rome, Italy
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Zhihua Hua
- Department of Environmental and Plant Biology & Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Xuehua Zhong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
10
|
Saha D, Norvil AB, Lanman NA, Gowher H. Simplified MethylRAD Sequencing to Detect Changes in DNA Methylation at Enhancer Elements in Differentiating Embryonic Stem Cells. EPIGENOMES 2020; 4:24. [PMID: 33828860 PMCID: PMC8023688 DOI: 10.3390/epigenomes4040024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
Differential DNA methylation is characteristic of gene regulatory regions, such as enhancers, which mostly constitute low or intermediate CpG content in their DNA sequence. Consequently, quantification of changes in DNA methylation at these sites is challenging. Given that DNA methylation across most of the mammalian genome is maintained, the use of genome-wide bisulfite sequencing to measure fractional changes in DNA methylation at specific sites is an overexertion which is both expensive and cumbersome. Here, we developed a MethylRAD technique with an improved experimental plan and bioinformatic analysis tool to examine regional DNA methylation changes in embryonic stem cells (ESCs) during differentiation. The transcriptional silencing of pluripotency genes (PpGs) during ESC differentiation is accompanied by PpG enhancer (PpGe) silencing mediated by the demethylation of H3K4me1 by LSD1. Our MethylRAD data show that in the presence of LSD1 inhibitor, a significant fraction of LSD1-bound PpGe fails to gain DNA methylation. We further show that this effect is mostly observed in PpGes with low/intermediate CpG content. Underscoring the sensitivity and accuracy of MethylRAD sequencing, our study demonstrates that this method can detect small changes in DNA methylation in regulatory regions, including those with low/intermediate CpG content, thus asserting its use as a method of choice for diagnostic purposes.
Collapse
Affiliation(s)
- Debapriya Saha
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; (D.S.); (A.B.N.)
| | - Allison B. Norvil
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; (D.S.); (A.B.N.)
| | - Nadia A. Lanman
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; (D.S.); (A.B.N.)
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
11
|
Karimzadeh MR, Pourdavoud P, Ehtesham N, Qadbeigi M, Asl MM, Alani B, Mosallaei M, Pakzad B. Regulation of DNA methylation machinery by epi-miRNAs in human cancer: emerging new targets in cancer therapy. Cancer Gene Ther 2020; 28:157-174. [PMID: 32773776 DOI: 10.1038/s41417-020-00210-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
Disruption in DNA methylation processes can lead to alteration in gene expression and function that would ultimately result in malignant transformation. In this way, studies have shown that, in cancers, methylation-associated silencing inactivates tumor suppressor genes, as effectively as mutations. DNA methylation machinery is composed of several genes, including those with DNA methyltransferases activity, proteins that bind to methylated cytosine in the promoter region, and enzymes with demethylase activity. Based on a prominent body of evidence, DNA methylation machinery could be regulated by microRNAs (miRNAs) called epi-miRNAs. Numerous studies demonstrated that dysregulation in DNA methylation regulators like upstream epi-miRNAs is indispensable for carcinogenesis; consequently, the malignant capacity of these cells could be reversed by restoring of this regulatory system in cancer. Conceivably, recognition of these epi-miRNAs in cancer cells could not only reveal novel molecular entities in carcinogenesis, but also render promising targets for cancer therapy. In this review, at first, we have an overview of the methylation alteration in cancers, and the effect of this phenomenon in miRNAs expression and after that, we conduct an in-depth discussion about the regulation of DNA methylation regulators by epi-miRNAs in cancer cells.
Collapse
Affiliation(s)
- Mohammad Reza Karimzadeh
- Department of medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | | | - Naeim Ehtesham
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Masood Movahedi Asl
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Meysam Mosallaei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Pakzad
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran.
| |
Collapse
|
12
|
Emperle M, Adam S, Kunert S, Dukatz M, Baude A, Plass C, Rathert P, Bashtrykov P, Jeltsch A. Mutations of R882 change flanking sequence preferences of the DNA methyltransferase DNMT3A and cellular methylation patterns. Nucleic Acids Res 2020; 47:11355-11367. [PMID: 31620784 PMCID: PMC6868496 DOI: 10.1093/nar/gkz911] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 02/01/2023] Open
Abstract
Somatic DNMT3A mutations at R882 are frequently observed in AML patients including the very abundant R882H, but also R882C, R882P and R882S. Using deep enzymology, we show here that DNMT3A-R882H has more than 70-fold altered flanking sequence preferences when compared with wildtype DNMT3A. The R882H flanking sequence preferences mainly differ on the 3' side of the CpG site, where they resemble DNMT3B, while 5' flanking sequence preferences resemble wildtype DNMT3A, indicating that R882H behaves like a DNMT3A/DNMT3B chimera. Investigation of the activity and flanking sequence preferences of other mutations of R882 revealed that they cause similar effects. Bioinformatic analyses of genomic methylation patterns focusing on flanking sequence effects after expression of wildtype DNMT3A and R882H in human cells revealed that genomic methylation patterns reflect the details of the altered flanking sequence preferences of R882H. Concordantly, R882H specific hypermethylation in AML patients was strongly correlated with the R882H flanking sequence preferences. R882H specific DNA hypermethylation events in AML patients were accompanied by R882H specific mis-regulation of several genes with strong cancer connection, which are potential downstream targets of R882H. In conclusion, our data provide novel and detailed mechanistic understanding of the pathogenic mechanism of the DNMT3A R882H somatic cancer mutation.
Collapse
Affiliation(s)
- Max Emperle
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Sabrina Adam
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Stefan Kunert
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Michael Dukatz
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Annika Baude
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, 28069120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, 28069120 Heidelberg, Germany
| | - Philipp Rathert
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
13
|
Norvil AB, AlAbdi L, Liu B, Tu YH, Forstoffer NE, Michie A, Chen T, Gowher H. The acute myeloid leukemia variant DNMT3A Arg882His is a DNMT3B-like enzyme. Nucleic Acids Res 2020; 48:3761-3775. [PMID: 32123902 PMCID: PMC7144950 DOI: 10.1093/nar/gkaa139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
We have previously shown that the highly prevalent acute myeloid leukemia (AML) mutation, Arg882His, in DNMT3A disrupts its cooperative mechanism and leads to reduced enzymatic activity, thus explaining the genomic hypomethylation in AML cells. However, the underlying cause of the oncogenic effect of Arg882His in DNMT3A is not fully understood. Here, we discovered that DNMT3A WT enzyme under conditions that favor non-cooperative kinetic mechanism as well as DNMT3A Arg882His variant acquire CpG flanking sequence preference akin to that of DNMT3B, which is non-cooperative. We tested if DNMT3A Arg882His could preferably methylate DNMT3B-specific target sites in vivo. Rescue experiments in Dnmt3a/3b double knockout mouse embryonic stem cells show that the corresponding Arg878His mutation in mouse DNMT3A severely impairs its ability to methylate major satellite DNA, a DNMT3A-preferred target, but has no overt effect on the ability to methylate minor satellite DNA, a DNMT3B-preferred target. We also observed a previously unappreciated CpG flanking sequence bias in major and minor satellite repeats that is consistent with DNMT3A and DNMT3B specificity suggesting that DNA methylation patterns are guided by the sequence preference of these enzymes. We speculate that aberrant methylation of DNMT3B target sites could contribute to the oncogenic potential of DNMT3A AML variant.
Collapse
Affiliation(s)
- Allison B Norvil
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Lama AlAbdi
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yu Han Tu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nicole E Forstoffer
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Amie R Michie
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Liang Z, Zhu Y, Long J, Ye F, Hu G. Both intra and inter-domain interactions define the intrinsic dynamics and allosteric mechanism in DNMT1s. Comput Struct Biotechnol J 2020; 18:749-764. [PMID: 32280430 PMCID: PMC7132064 DOI: 10.1016/j.csbj.2020.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/03/2023] Open
Abstract
Dynamics and allosteric potentials of the RFTS domain are proposed. Hinge sites located at the RFTS-CD interface are key regulators for inter-domain interactions. Network analysis reveals local allosteric networks and inter-domain communication pathways in DNMT1. A potential allosteric site at the TRD interface for DNMT1 is identified.
DNA methyltransferase 1 (DNMT1), a large multidomain enzyme, is believed to be involved in the passive transmission of genomic methylation patterns via methylation maintenance. Yet, the molecular mechanism of interaction networks underlying DNMT1 structures, dynamics, and its biological significance has yet to be fully characterized. In this work, we used an integrated computational strategy that combined coarse-grained and atomistic simulations with coevolution information and network modeling of the residue interactions for the systematic investigation of allosteric dynamics in DNMT1. The elastic network modeling has proposed that the high plasticity of RFTS has strengthened the correlated behaviors of DNMT1 structures through the hinge sites located at the RFTS-CD interface, which mediate the collective motions between domains. The perturbation response scanning (PRS) analysis combined with the enrichment analysis of disease mutations have further highlighted the allosteric potential of the RFTS domain. Furthermore, the long-range paths connect the intra-domain interactions through the TRD interface and catalytic interface, emphasizing some key inter-domain interactions as the bridges in the global allosteric regulation of DNMT1. The observed interplay between conserved intra-domain networks and dynamical plasticity encoded by inter-domain interactions provides insights into the intrinsic dynamics and functional evolution, as well as the design of allosteric modulators of DNMT1 based on the TRD interface.
Collapse
Affiliation(s)
- Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yu Zhu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Long
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
15
|
Functional Analysis of DNMT3A DNA Methyltransferase Mutations Reported in Patients with Acute Myeloid Leukemia. Biomolecules 2019; 10:biom10010008. [PMID: 31861499 PMCID: PMC7022712 DOI: 10.3390/biom10010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/30/2022] Open
Abstract
In mammals, DNA methylation is necessary for the maintenance of genomic stability, gene expression regulation, and other processes. During malignant diseases progression, changes in both DNA methylation patterns and DNA methyltransferase (MTase) genes are observed. Human de novo MTase DNMT3A is most frequently mutated in acute myeloid leukemia (AML) with a striking prevalence of R882H mutation, which has been extensively studied. Here, we investigate the functional role of the missense mutations (S714C, R635W, R736H, R771L, P777R, and F752V) found in the catalytic domain of DNMT3A in AML patients. These were accordingly mutated in the murine Dnmt3a catalytic domain (S124C, R45W, R146H, R181L, P187R, and F162V) and in addition, one-site CpG-containing DNA substrates were used as a model system. The 3–15-fold decrease (S124C and P187R) or complete loss (F162V, R45W, and R146H) of Dnmt3a-CD methylation activity was observed. Remarkably, Pro 187 and Arg 146 are not located at or near the Dnmt3a functional motives. Regulatory protein Dnmt3L did not enhance the methylation activity of R45W, R146H, P187R, and F162V mutants. The key steps of the Dnmt3a-mediated methylation mechanism, including DNA binding and transient covalent intermediate formation, were examined. There was a complete loss of DNA-binding affinity for R45W located in the AdoMet binding region and for R146H. Dnmt3a mutants studied in vitro suggest functional impairment of DNMT3A during pathogenesis.
Collapse
|
16
|
Dolen EK, McGinnis JH, Tavory RN, Weiss JA, Switzer RL. Disease-Associated Mutations G589A and V590F Relieve Replication Focus Targeting Sequence-Mediated Autoinhibition of DNA Methyltransferase 1. Biochemistry 2019; 58:5151-5159. [PMID: 31804802 DOI: 10.1021/acs.biochem.9b00749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In eukaryotes, the most common epigenetic DNA modification is methylation of carbon 5 of cytosines, predominantly in CpG dinucleotides. Methylation patterns are established and maintained by a family of proteins known as DNA methyltransferases (DNMTs). DNA methylation is an important epigenetic mark associated with gene repression, and disruption of the normal DNA methylation pattern is known to play a role in several disease states. Methylation patterns are primarily maintained by DNMT1, which possesses specificity for methylation of hemimethylated DNA. DNMT1 is a multidomain protein with a C-terminal catalytic methyltransferase domain and a large N-terminal regulatory region. The replication focus targeting sequence (RFTS) domain, found in the regulatory region, is an endogenous inhibitor of DNMT1 activity. Recently, several mutations in the RFTS domain were shown to be causal for two adult onset neurodegenerative diseases; however, little is known about the impact of these mutations on the structure and function of DNMT1. Two of these mutations, G589A and V590F, are associated with development of autosomal dominant cerebellar ataxia, deafness, and narcolepsy (ADCA-DN). We have successfully expressed and purified G589A and V590F DNMT1 for in vitro studies. The mutations significantly decrease the thermal stability of DNMT1, yet the mutant proteins exhibit 2.5-3.5-fold increases in DNA binding affinity. In addition, the mutations weaken RFTS-mediated inhibition of DNA methylation activity. Taken together, these data suggest these disease-associated mutations decrease protein stability and, at least partially, relieve normal RFTS-mediated autoinhibition of DNMT1.
Collapse
Affiliation(s)
- Emma K Dolen
- Department of Chemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - James H McGinnis
- Program in Cell Biology/Biochemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Rachel N Tavory
- Program in Cell Biology/Biochemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Jill A Weiss
- Program in Cell Biology/Biochemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Rebecca L Switzer
- Department of Chemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| |
Collapse
|
17
|
Jeltsch A, Broche J, Lungu C, Bashtrykov P. Biotechnological Applications of MBD Domain Proteins for DNA Methylation Analysis. J Mol Biol 2019:S0022-2836(19)30544-3. [PMID: 31493411 DOI: 10.1016/j.jmb.2019.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 02/03/2023]
Abstract
5-Methylcytosine binding domain (MBD) family proteins are essential readers of DNA methylation. Their methylation specific DNA binding has been exploited in the context of two main groups of important biotechnological applications. In the first, an MBD domain is used to bind methylated DNA in vitro. This can be employed for global DNA methylation analysis in MBD-seq assays, where methylated DNA is purified from fragmented genomic DNA by MBD pulldown or capture, followed by next-generation sequencing (NGS) and downstream data analysis as established for ChIP-seq applications. In addition, the ability of MBD domains to bind methylated DNA can be used for in vitro DNMT activity and inhibition assays. In the second type of applications, MBD domains are used to bind methylated DNA in cells. In MBD imaging, these domains are fused to fluorophores and expressed in cells, where they bind to methylated DNA allowing the readout of DNA methylation by fluorescence microscopy. This approach recently has been further developed to allow the locus-specific readout of DNA methylation using bimolecular fluorescence complementation-based bimolecular anchor detector sensors. These tools, which are compatible with live cell imaging, combine the sequence-specific DNA binding of anchor domains and the 5-methylcytosine-specific binding of an MBD domain to chromatin. Depending on the individual assay, MBD-based detection systems for DNA methylation provide important advantages, ranging from cost efficiency and easy workflows to unique opportunities for the readout of methylation levels in living cells with locus-specific resolution during organismic development.
Collapse
Affiliation(s)
- Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany.
| | - Julian Broche
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Cristiana Lungu
- Institute of Cell Biology and Immunology, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
18
|
Editorial-Role of DNA Methyltransferases in the Epigenome. Genes (Basel) 2019; 10:genes10080574. [PMID: 31366147 PMCID: PMC6723798 DOI: 10.3390/genes10080574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
DNA methylation, a modification found in most species, regulates chromatin functions in conjunction with other epigenome modifications, such as histone post-translational modifications and non-coding RNAs. In mammals, DNA methylation has essential roles in development by orchestrating the generation and maintenance of the phenotypic diversity of human cell types. This Special Issue of Genes contains eight review articles, which cover several aspects of epigenome regulation by DNA methyltransferases (DNMTs), the enzymes responsible for the introduction of DNA methylation. The manuscripts present the most recent advances regarding the structure and function of DNMTs, their targeting and regulation by interacting factors and chromatin modifications, and the roles of DNMTs in mammalian development and human diseases. However, many aspects of these important enzymes are still insufficiently understood. Potential directions of future work are the regulation of DNMTs by post-translational modifications and their connection to cellular signaling and second messenger cascades on one hand and to large multifactorial epigenetic chromatin circuits on the other. Additionally, technical advancements, including the availability of designer nucleosomes and the rapid development of cryo-electron microscopy are expected to trigger breakthrough discoveries in this exciting field.
Collapse
|