1
|
Olou BA, Hègbè ADMT, Piepenbring M, Yorou NS. Genetic diversity and population differentiation in Earliella scabrosa, a pantropical species of Polyporales. Sci Rep 2023; 13:23020. [PMID: 38155211 PMCID: PMC10754928 DOI: 10.1038/s41598-023-50398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
Earliella scabrosa is a pantropical species of Polyporales (Basidiomycota) and well-studied concerning its morphology and taxonomy. However, its pantropical intraspecific genetic diversity and population differentiation is unknown. We initiated this study to better understand the genetic variation within E. scabrosa and to test if cryptic species are present. Sequences of three DNA regions, the nuclear ribosomal internal transcribed spacer (ITS), the large subunit ribosomal DNA (LSU), and the translation elongation factor (EF1α) were analysed for 66 samples from 15 geographical locations. We found a high level of genetic diversity (haplotype diversity, Hd = 0.88) and low nucleotide diversity (π = 0.006) across the known geographical range of E. scabrosa based on ITS sequences. The analysis of molecular variance (AMOVA) indicates that the genetic variability is mainly found among geographical populations. The results of Mantel tests confirmed that the genetic distance among populations of E. scabrosa is positively correlated with the geographical distance, which indicates that geographical isolation is an important factor for the observed genetic differentiation. Based on phylogenetic analyses of combined dataset ITS-LSU-EF1α, the low intraspecific divergences (0-0.3%), and the Automated Barcode Gap Discovery (ABGD) analysis, E. scabrosa can be considered as a single species with five different geographical populations. Each population might be in the process of allopatric divergence and in the long-term they may evolve and become distinct species.
Collapse
Affiliation(s)
- Boris Armel Olou
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin.
| | - Apollon D M T Hègbè
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin
| | - Meike Piepenbring
- Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt am Main, Biologicum, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Nourou Soulemane Yorou
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin
| |
Collapse
|
2
|
Hopley T, Byrne M. Implications of climate change on a floodplain shrub: associations between genomic and environmental variation. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
3
|
Walters SJ, Robinson TP, Byrne M, Nevill P. Seed sourcing in the genomics era: Multispecies provenance delineation for current and future climates. Restor Ecol 2022. [DOI: 10.1111/rec.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheree J. Walters
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
| | - Todd P. Robinson
- School of Earth and Planetary Sciences Curtin University Bentley WA 6102 Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre WA 6983 Australia
- School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
| | - Paul Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
| |
Collapse
|
4
|
Griciuvienė L, Janeliūnas Ž, Jurgelevičius V, Paulauskas A. The effects of habitat fragmentation on the genetic structure of wild boar (Sus scrofa) population in Lithuania. BMC Genom Data 2021; 22:53. [PMID: 34837959 PMCID: PMC8626901 DOI: 10.1186/s12863-021-01008-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Wild boar (Sus scrofa) is a widely distributed ungulate whose success can be attributed to a variety of ecological features. The genetic variation and population structure of Lithuania's wild boar population have not yet been thoroughly studied. The purposes of this study were to investigate the genetic diversity of S. scrofa and assess the effects of habitat fragmentation on the population structure of wild boar in Lithuania. A total of 96 S. scrofa individuals collected from different regions of Lithuania were genotyped using fifteen microsatellite loci. RESULTS The microsatellite analysis of the wild boars indicated high levels of genetic diversity within the population. Microsatellite markers showed evidence of a single panmictic wild boar population in Lithuania according to STRUCTURE's highest average likelihood, which was K = 1. This was supported by pairwise Fst values and AMOVA, which indicated no differentiation between the four sampling areas. The results of the Mantel test revealed a weak isolation by distance and geographic diversity gradients that persisted between locations. Motorway fencing and heavy traffic were not an effective barrier to wild boar movement. CONCLUSIONS There was limited evidence of population genetic structure among the wild boar, supporting the presence of a single population across the study area and indicating that there may be no barriers hindering wild boar dispersal across the landscape. The widespread wild boar population in Lithuania, the high level of genetic variation observed within subpopulations, and the low level of variation identified between subpopulations suggest migration and gene flow between locations. The results of this study should provide valuable information in future for understanding and comparing the detailed structure of wild boar population in Lithuania following the outbreak of African swine fever.
Collapse
Affiliation(s)
| | - Žygimantas Janeliūnas
- Vytautas Magnus University, K. Donelaičio 58, 44248, Kaunas, Lithuania
- Molecular Biology and GMO Department, National Food and Veterinary Risk Assessment Institute, J. Kairiūkščio 10, 08409, Vilnius, Lithuania
| | - Vaclovas Jurgelevičius
- Vytautas Magnus University, K. Donelaičio 58, 44248, Kaunas, Lithuania
- Molecular Biology and GMO Department, National Food and Veterinary Risk Assessment Institute, J. Kairiūkščio 10, 08409, Vilnius, Lithuania
| | | |
Collapse
|
5
|
Amiri N, Vaissi S, Aghamir F, Saberi‐Pirooz R, Rödder D, Ebrahimi E, Ahmadzadeh F. Tracking climate change in the spatial distribution pattern and the phylogeographic structure of Hyrcanian wood frog,
Rana pseudodalmatina
(Anura: Ranidae). J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Negar Amiri
- Department of Biodiversity and Ecosystem Management Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| | - Somaye Vaissi
- Department of Biology Faculty of Science Razi University Kermanshah Iran
| | - Fateme Aghamir
- Department of Agroecology Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| | - Reihaneh Saberi‐Pirooz
- Department of Biodiversity and Ecosystem Management Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| | - Dennis Rödder
- Herpetology Section Zoologisches Forschungsmuseum Alexander Koenig (ZFMK) Bonn Germany
| | - Elham Ebrahimi
- Department of Biodiversity and Ecosystem Management Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| | - Faraham Ahmadzadeh
- Department of Biodiversity and Ecosystem Management Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| |
Collapse
|
6
|
Bogaerts‐Márquez M, Guirao‐Rico S, Gautier M, González J. Temperature, rainfall and wind variables underlie environmental adaptation in natural populations of Drosophila melanogaster. Mol Ecol 2021; 30:938-954. [PMID: 33350518 PMCID: PMC7986194 DOI: 10.1111/mec.15783] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
While several studies in a diverse set of species have shed light on the genes underlying adaptation, our knowledge on the selective pressures that explain the observed patterns lags behind. Drosophila melanogaster is a valuable organism to study environmental adaptation because this species originated in Southern Africa and has recently expanded worldwide, and also because it has a functionally well-annotated genome. In this study, we aimed to decipher which environmental variables are relevant for adaptation of D. melanogaster natural populations in Europe and North America. We analysed 36 whole-genome pool-seq samples of D. melanogaster natural populations collected in 20 European and 11 North American locations. We used the BayPass software to identify single nucleotide polymorphisms (SNPs) and transposable elements (TEs) showing signature of adaptive differentiation across populations, as well as significant associations with 59 environmental variables related to temperature, rainfall, evaporation, solar radiation, wind, daylight hours, and soil type. We found that in addition to temperature and rainfall, wind related variables are also relevant for D. melanogaster environmental adaptation. Interestingly, 23%-51% of the genes that showed significant associations with environmental variables were not found overly differentiated across populations. In addition to SNPs, we also identified 10 reference transposable element insertions associated with environmental variables. Our results showed that genome-environment association analysis can identify adaptive genetic variants that are undetected by population differentiation analysis while also allowing the identification of candidate environmental drivers of adaptation.
Collapse
Affiliation(s)
- María Bogaerts‐Márquez
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| | - Sara Guirao‐Rico
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| | - Mathieu Gautier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniversité de MontpellierMontpellierFrance
| | - Josefa González
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| |
Collapse
|
7
|
Gosper CR, Kinloch J, Coates DJ, Byrne M, Pitt G, Yates CJ. Differential exposure and susceptibility to threats based on evolutionary history: how OCBIL theory informs flora conservation. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Optimal conservation approaches have been proposed to differ for biota with contrasting evolutionary histories. Natural selection filters the distribution of plant traits over evolutionary time, with the current expression of traits mediating susceptibility to contemporary and often novel threats. We use old, climatically buffered, infertile landscape (OCBIL) theory to compile predictions regarding differences in exposure and susceptibility to key threats between OCBIL and young, often disturbed, fertile landscape (YODFEL) flora. Based on literature and existing data from the Southwest Australian Floristic Region (SWAFR), we evaluate evidence in support of our predictions, finding strong theoretical and empirical support for the proposition that exposure and/or impact of many threats differs between OCBILs and YODFELs. OCBILs have more exposure to land clearance from mining, whereas many YODFELs have greater exposure to land clearance from agriculture, and urban and industrial land uses, and greater overall levels of habitat loss and fragmentation. OCBIL flora are more susceptible to pathogens and extremes of fire interval than YODFEL flora, but conversely may have a greater capacity to persist in smaller populations if small populations featured in the evolutionary history of the species prior to anthropogenic fragmentation, and have substantial resistance to weed invasion. We argue that consideration of evolutionary history has an important role in informing conservation management.
Collapse
Affiliation(s)
- Carl R Gosper
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - Janine Kinloch
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - David J Coates
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - Georgie Pitt
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - Colin J Yates
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| |
Collapse
|
8
|
ALmohisen IA, Al-Muwayhi MA, Assaeed AM, Migdadi HM. Evaluation of the genetic diversity of wild Salvadora persica 'Arak' from Saudi Arabia. Mol Biol Rep 2020; 47:7843-7849. [PMID: 33034882 DOI: 10.1007/s11033-020-05860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
Assessment of genetic diversity is crucial for efficient selection genotypes in plant breeding and improvement programs. Studies of genetic diversity of S. persica are rare relative to the large species diversity in Saudi Arabia, despite its valuable importance as one of the most popular medicinal plants. We investigate the genetic variability and genetic differentiation among and within wild Salvadora persica populations distributed in four regions of Saudi Arabia. Twelve sequence-related amplified polymorphism (SRAP) primers combination generated 326 alleles, with an average of 27.2 alleles per primer. All primers showed 100 polymorphism percentage, and higher PIC values exceeded 0.90. Jaccard similarity values varied between 0.04 to 0.43, with an average of 0.31, which showed a weak relationship among the accessions and their origin. Based on UGPMA and principal coordinate analysis, accessions collected from the same region showed less aggregation. Genetic diversity parameters showed that both Aflaj and Joodah populations recorded the highest mean values for the effective number of alleles (1.26 and 1.24). Shannon index and genetic heterozygosity (0.23 and 0.15 for both populations), and percent of polymorphism 45.45% for Aflaj and 43.87 for Joodah population. Most of the genetic variation was because of differences within populations (77%) and 23% among populations. SRAP markers explored the genetic diversity among and within S. persica populations. In this work, genetic diversity within populations was high, and the population structure was weak. We detected no specific geographic structure, which may reveal an active movement of plants among populations.
Collapse
Affiliation(s)
- Ibrahem A ALmohisen
- Faculty of Science and Humanities, Department of Biology, Shaqra University, P.O. Box 33, Quwayiyah, 11961, Saudi Arabia
| | - Mohammed A Al-Muwayhi
- Faculty of Science, Department of Physics and Chemistry, Shagra University, P.O. Box 33, Shaqra, 11961, Saudi Arabia
| | - Abdulaziz M Assaeed
- Department of Plant Production, College of Food & Agric. Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Hussein M Migdadi
- Department of Plant Production, College of Food & Agric. Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia. .,National Agricultural Research Center, P. O Box: 639, Baq'a, 19381, Jordan.
| |
Collapse
|
9
|
Walters SJ, Robinson TP, Byrne M, Wardell-Johnson GW, Nevill P. Contrasting patterns of local adaptation along climatic gradients between a sympatric parasitic and autotrophic tree species. Mol Ecol 2020; 29:3022-3037. [PMID: 32621768 DOI: 10.1111/mec.15537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022]
Abstract
Sympatric tree species are subject to similar climatic drivers, posing a question as to whether they display comparable adaptive responses. However, no study has explicitly examined local adaptation of co-occurring parasitic and autotrophic plant species to the abiotic environment. Here we test the hypotheses that a generalist parasitic tree would display a weaker signal of selection and that genomic variation would associate with fewer climatic variables (particularly precipitation) but have similar spatial patterns to a sympatric autotrophic tree species. To test these hypotheses, we collected samples from 17 sites across the range of two tree species, the hemiparasite Nuytsia floribunda (n = 264) and sympatric autotroph Melaleuca rhaphiophylla (n = 272). We obtained 5,531 high-quality genome-wide single nucleotide polymorphisms (SNPs) for M. rhaphiophylla and 6,727 SNPs for N. floribunda using DArTseq genome scan technology. Population differentiation and environmental association approaches were used to identify signals of selection. Generalized dissimilarly modelling was used to detect climatic and spatial patterns of local adaptation across climatic gradients. Overall, 322 SNPs were identified as putatively adaptive for the autotroph, while only 57 SNPs were identified for the parasitic species. We found genomic variation to associate with different sets of bioclimatic variables for each species, with precipitation relatively less important for the parasite. Spatial patterns of predicted adaptive variability were different and indicate that co-occurring species with disparate life history traits may not respond equally to selective pressures (i.e., temperature and precipitation). Together, these findings provide insight into local adaptation of sympatric parasitic and autotrophic tree species to abiotic environments.
Collapse
Affiliation(s)
- Sheree J Walters
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Todd P Robinson
- School of Earth and Planetary Science, Curtin University, Perth, Western Australia, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Perth, Western Australia, Australia.,School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Grant W Wardell-Johnson
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Paul Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia.,Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|