1
|
Jia F, Wang F, Li S, Cui Y, Yu Y. Transcriptome sequencing reveals regulatory genes associated with neurogenic hearing loss. BMC Med Genomics 2025; 18:11. [PMID: 39810209 PMCID: PMC11734420 DOI: 10.1186/s12920-024-02067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Hearing loss is a prevalent condition with a significant impact on individuals' quality of life. However, comprehensive studies investigating the differential gene expression and regulatory mechanisms associated with hearing loss are lacking, particularly in the context of diverse patient samples. In this study, we integrated data from 10 patients across different regions, age groups, and genders, with their data retrieved from a public transcriptome database, to explore the molecular basis of hearing loss. These samples are mainly from fibroblasts and keratinocytes. Through differential gene expression analysis, we identified key genes, including ICAM1, SLC1A1, and CD24, which have already been shown to play important roles in neurogenic hearing loss. Furthermore, we predicted potential transcriptional regulatory factors that may modulate the expression of these genes. Enrichment analysis revealed biological processes and pathways associated with hearing loss, highlighting the involvement of circadian rhythm disruption and other neuro-related disorders. Although our study is limited by the sample size and the absence of larger-scale investigations, the identified genes and regulatory factors provide valuable insights into the molecular mechanisms underlying hearing loss. Further molecular and cellular experiments are necessary to validate these findings and elucidate the precise regulatory mechanisms involved. In conclusion, our study contributes to the understanding of hearing loss pathogenesis and offers potential targets for molecular diagnostics and gene-based therapies. This provides a foundation for further research into personalized approaches to diagnosing and treating hearing loss.
Collapse
Affiliation(s)
- Fengfeng Jia
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China
| | - Fang Wang
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China
| | - Song Li
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China
| | - Yunhua Cui
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China
| | - Yongmei Yu
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China.
| |
Collapse
|
2
|
Sharma N, Kumari D, Panigrahi I, Khetarpal P. A systematic review of the monogenic causes of Non-Syndromic Hearing Loss (NSHL) and discussion of Current Diagnosis and Treatment options. Clin Genet 2023; 103:16-34. [PMID: 36089522 DOI: 10.1111/cge.14228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
Hearing impairment is one of the most widespread inheritable sensory disorder affecting at least 1 in every 1000 born. About two-third of hereditary hearing loss (HHL) disorders are non-syndromic. To provide comprehensive update of monogenic causes of non-syndromic hearing loss (NSHL), literature search has been carried out with appropriate keywords in the following databases-PubMed, Google Scholar, Cochrane library, and Science Direct. Out of 2214 papers, 271 papers were shortlisted after applying inclusion and exclusion criterion. Data extracted from selected papers include information about gene name, identified pathogenic variants, ethnicity of the patient, age of onset, gender, title, authors' name, and year of publication. Overall, pathogenic variants in 98 different genes have been associated with NSHL. These genes have important role to play during early embryonic development in ear structure formation and hearing development. Here, we also review briefly the recent information about diagnosis and treatment approaches. Understanding pathogenic genetic variants are helpful in the management of affected and may offer targeted therapies in future.
Collapse
Affiliation(s)
- Nandita Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Divya Kumari
- Department of Pediatrics Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Inusha Panigrahi
- Department of Pediatrics Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Preeti Khetarpal
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
3
|
Yang JY, Wang WQ, Han MY, Huang SS, Wang GJ, Su Y, Xu JC, Fu Y, Kang DY, Yang K, Zhang X, Liu X, Gao X, Yuan YY, Dai P. Addition of an affected family member to a previously ascertained autosomal recessive nonsyndromic hearing loss pedigree and systematic phenotype-genotype analysis of splice-site variants in MYO15A. BMC Med Genomics 2022; 15:241. [PMCID: PMC9673454 DOI: 10.1186/s12920-022-01368-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Pathogenic variants in MYO15A are known to cause autosomal recessive nonsyndromic hearing loss (ARNSHL), DFNB3. We have previously reported on one ARNSHL family including two affected siblings and identified MYO15A c.5964+3G > A and c.8375 T > C (p.Val2792Ala) as the possible deafness-causing variants. Eight year follow up identified one new affected individual in this family, who also showed congenital, severe to profound sensorineural hearing loss. By whole exome sequencing, we identified a new splice-site variant c.5531+1G > C (maternal allele), in a compound heterozygote with previously identified missense variant c.8375 T > C (p.Val2792Ala) (paternal allele) in MYO15A as the disease-causing variants. The new affected individual underwent unilateral cochlear implantation at the age of 1 year, and 5 year follow-up showed satisfactory speech and language outcomes. Our results further indicate that MYO15A-associated hearing loss is good candidates for cochlear implantation, which is in accordance with previous report. In light of our findings and review of the literatures, 58 splice-site variants in MYO15A are correlated with a severe deafness phenotype, composed of 46 canonical splice-site variants and 12 non-canonical splice-site variants.
Collapse
Affiliation(s)
- Jin-Yuan Yang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Wei-Qian Wang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China ,grid.488137.10000 0001 2267 2324Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Ming-Yu Han
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Sha-Sha Huang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Guo-Jian Wang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Yu Su
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital Affiliated Hainan Hospital, Jianglin Road, Sanya, 572013 People’s Republic of China ,Hainan Province Clinical Research Center for Otolaryngologic and Head and Neck Diseases, Jianglin Road, Sanya, 572013 People’s Republic of China
| | - Jin-Cao Xu
- grid.488137.10000 0001 2267 2324Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Ying Fu
- grid.27255.370000 0004 1761 1174Department of Otorhinolaryngology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035 Shandong People’s Republic of China
| | - Dong-Yang Kang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Kun Yang
- grid.488137.10000 0001 2267 2324Postgraduate Training Base of Jinzhou Medical University, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Xin Zhang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Xing Liu
- grid.488137.10000 0001 2267 2324Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Xue Gao
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China ,grid.488137.10000 0001 2267 2324Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Yong-Yi Yuan
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Pu Dai
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Lezirovitz K, Mingroni-Netto RC. Genetic etiology of non-syndromic hearing loss in Latin America. Hum Genet 2021; 141:539-581. [PMID: 34652575 DOI: 10.1007/s00439-021-02354-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Latin America comprises all countries from South and Central America, in addition to Mexico. It is characterized by a complex mosaic of regions with heterogeneous genetic profiles regarding the geographical origin of the ancestors and proportions of admixture between the Native American, European and African components. In the first years following the findings of the role of the GJB2/GJB6 genes in the etiology of hearing loss, most scientific investigations about the genetics of hearing loss in Latin America focused on assessing the frequencies of pathogenic variants in these genes. More recently, modern techniques allowed researchers in Latin America to make exciting contributions to the finding of new candidate genes, novel mechanisms of inheritance in previously known genes, and characterize a wide diversity of variants, many of them unique to Latin America. This review aimed to provide a general landscape of the genetic studies about non-syndromic hearing loss in Latin America and their main scientific contributions. It allows the conclusion that, although there are similar contributions of some genes, such as GJB2/GJB6, when compared to European and North American countries, Latin American populations revealed some peculiarities that indicate the need for tailored strategies of screening and diagnosis to specific geographic regions.
Collapse
Affiliation(s)
- Karina Lezirovitz
- Laboratório de Otorrinolaringologia/LIM32, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Regina Célia Mingroni-Netto
- Departamento de Genética e Biologia Evolutiva, Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Resmerita I, Cozma RS, Popescu R, Radulescu LM, Panzaru MC, Butnariu LI, Caba L, Ilie OD, Gavril EC, Gorduza EV, Rusu C. Genetics of Hearing Impairment in North-Eastern Romania-A Cost-Effective Improved Diagnosis and Literature Review. Genes (Basel) 2020; 11:genes11121506. [PMID: 33333757 PMCID: PMC7765194 DOI: 10.3390/genes11121506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background: We have investigated the main genetic causes for non-syndromic hearing impairment (NSHI) in the hearing impairment individuals from the North-Eastern Romania and proposed a cost-effective diagnosis protocol. Methods: MLPA followed by Sanger Sequencing were used for all 291 patients included in this study. Results: MLPA revealed abnormal results in 141 cases (48.45%): 57 (40.5%) were c.35delG homozygous, 26 (18.44%) were c.35delG heterozygous, 14 (9.93%) were compound heterozygous and 16 (11.35%) had other types of variants. The entire coding region of GJB2 was sequenced and out of 150 patients with normal results at MLPA, 29.33% had abnormal results: variants in heterozygous state: c.71G>A (28%), c.457G>A (20%), c.269T>C (12%), c.109G>A (12%), c.100A>T (12%), c.551G>C (8%). Out of 26 patients with c.35delG in heterozygous state, 38.46% were in fact compound heterozygous. Conclusions: We identified two variants: c.109G>A and c.100A>T that have not been reported in any study from Romania. MLPA is an inexpensive, rapid and reliable technique that could be a cost-effective diagnosis method, useful for patients with hearing impairment. It can be adaptable for the mutation spectrum in every population and followed by Sanger sequencing can provide a genetic diagnosis for patients with different degrees of hearing impairment.
Collapse
Affiliation(s)
- Irina Resmerita
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
- Correspondence: or (I.R.); (R.S.C.); Tel.: +40-0741195689 (I.R.)
| | - Romica Sebastian Cozma
- Department of Otorhinolaryngology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania;
- Correspondence: or (I.R.); (R.S.C.); Tel.: +40-0741195689 (I.R.)
| | - Roxana Popescu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Luminita Mihaela Radulescu
- Department of Otorhinolaryngology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania;
| | - Monica Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Lacramioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No 20A, 700505 Iasi, Romania;
| | - Eva-Cristiana Gavril
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Cristina Rusu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| |
Collapse
|