3
|
Musiał AD, Radović L, Stefaniuk-Szmukier M, Bieniek A, Wallner B, Ropka-Molik K. Mitochondrial DNA and Y chromosome reveal the genetic structure of the native Polish Konik horse population. PeerJ 2024; 12:e17549. [PMID: 38912049 PMCID: PMC11193968 DOI: 10.7717/peerj.17549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Polish Konik remains one of the most important horse breeds in Poland. The primitive, native horses with a stocky body and mouse-like coat color are protected by a conservation program, while their Polish population consists of about 3,480 individuals, representing 16 dam and six sire lines. To define the population's genetic structure, mitochondrial DNA and Y chromosome sequence variables were identified. The mtDNA whole hypervariable region analysis was carried out using the Sanger sequencing method on 233 Polish Koniks belonging to all dam lines, while the Y chromosome analysis was performed with the competitive allele-specific PCR genotyping method on 36 horses belonging to all sire lines. The analysis of the mtDNA hypervariable region detected 47 SNPs, which assigned all tested horses to 43 haplotypes. Most dam lines presented more than one haplotype; however, five dam lines were represented by only one haplotype. The haplotypes were classified into six (A, B, E, J, G, R) recognized mtDNA haplogroups, with most horses belonging to haplogroup A, common among Asian horse populations. Y chromosome analysis allocated Polish Koniks in the Crown group, condensing all modern horse breeds, and divided them into three haplotypes clustering with coldblood breeds (28 horses), warmblood breeds (two horses), and Duelmener Pony (six horses). The clustering of all Wicek sire line stallions with Duelmener horses may suggest a historical relationship between the breeds. Additionally, both mtDNA and Y chromosome sequence variability results indicate crossbreeding before the studbooks closure or irregularities in the pedigrees occurred before the DNA testing introduction.
Collapse
Affiliation(s)
- Adrianna Dominika Musiał
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Lara Radović
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Stefaniuk-Szmukier
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Agnieszka Bieniek
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Barbara Wallner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
4
|
Bozlak E, Radovic L, Remer V, Rigler D, Allen L, Brem G, Stalder G, Castaneda C, Cothran G, Raudsepp T, Okuda Y, Moe KK, Moe HH, Kounnavongsa B, Keonouchanh S, Van NH, Vu VH, Shah MK, Nishibori M, Kazymbet P, Bakhtin M, Zhunushov A, Paul RC, Dashnyam B, Nozawa K, Almarzook S, Brockmann GA, Reissmann M, Antczak DF, Miller DC, Sadeghi R, von Butler-Wemken I, Kostaras N, Han H, Manglai D, Abdurasulov A, Sukhbaatar B, Ropka-Molik K, Stefaniuk-Szmukier M, Lopes MS, da Câmara Machado A, Kalashnikov VV, Kalinkova L, Zaitev AM, Novoa-Bravo M, Lindgren G, Brooks S, Rosa LP, Orlando L, Juras R, Kunieda T, Wallner B. Refining the evolutionary tree of the horse Y chromosome. Sci Rep 2023; 13:8954. [PMID: 37268661 DOI: 10.1038/s41598-023-35539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
The Y chromosome carries information about the demography of paternal lineages, and thus, can prove invaluable for retracing both the evolutionary trajectory of wild animals and the breeding history of domesticates. In horses, the Y chromosome shows a limited, but highly informative, sequence diversity, supporting the increasing breeding influence of Oriental lineages during the last 1500 years. Here, we augment the primary horse Y-phylogeny, which is currently mainly based on modern horse breeds of economic interest, with haplotypes (HT) segregating in remote horse populations around the world. We analyze target enriched sequencing data of 5 Mb of the Y chromosome from 76 domestic males, together with 89 whole genome sequenced domestic males and five Przewalski's horses from previous studies. The resulting phylogeny comprises 153 HTs defined by 2966 variants and offers unprecedented resolution into the history of horse paternal lineages. It reveals the presence of a remarkable number of previously unknown haplogroups in Mongolian horses and insular populations. Phylogenetic placement of HTs retrieved from 163 archaeological specimens further indicates that most of the present-day Y-chromosomal variation evolved after the domestication process that started around 4200 years ago in the Western Eurasian steppes. Our comprehensive phylogeny significantly reduces ascertainment bias and constitutes a robust evolutionary framework for analyzing horse population dynamics and diversity.
Collapse
Affiliation(s)
- Elif Bozlak
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lara Radovic
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Viktoria Remer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Doris Rigler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lucy Allen
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Caitlin Castaneda
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gus Cothran
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Terje Raudsepp
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Yu Okuda
- Museum of Dinosaur Research, Okayama University of Science, Okayama, Japan
| | - Kyaw Kyaw Moe
- Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Hla Hla Moe
- Department of Genetics and Animal Breeding, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Bounthavone Kounnavongsa
- National Agriculture and Forestry Research Institute (Lao) Resources, Livestock Research Center, Xaythany District, Vientiane, Laos
| | - Soukanh Keonouchanh
- Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Nguyen Huu Van
- Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Van Hai Vu
- Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Manoj Kumar Shah
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, 44209, Nepal
| | - Masahide Nishibori
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Polat Kazymbet
- Radiobiological Research Institute, JSC Astana Medical University, Astana, 010000, Republic of Kazakhstan
| | - Meirat Bakhtin
- Institute of Biotechnology, National Academy of Sciences of the Kyrgyz Republic, Bishkek, 720071, Kyrgyz Republic
| | - Asankadyr Zhunushov
- Institute of Biotechnology, National Academy of Sciences of the Kyrgyz Republic, Bishkek, 720071, Kyrgyz Republic
| | - Ripon Chandra Paul
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Bumbein Dashnyam
- Institute of Biological Sciences, Mongolian Academy of Sciences, Ulaan Baator, Mongolia
| | - Ken Nozawa
- Primate Research Institute, Kyoto University, Aichi, Japan
| | - Saria Almarzook
- Albrecht Daniel Thaer-Institut, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institut, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Monika Reissmann
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Donald C Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Raheleh Sadeghi
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Ines von Butler-Wemken
- Barb Horse Breeding Organisation VFZB E. V., Verein der Freunde und Züchter Des Berberpferdes E.V., Kirchgasse 11, 67718, Schmalenberg, Germany
| | | | - Haige Han
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Dugarjaviin Manglai
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Abdugani Abdurasulov
- Department of Agriculture, Faculty of Natural Sciences and Geography, Osh State University, 723500, Osh, Kyrgyzstan
| | - Boldbaatar Sukhbaatar
- Sector of Surveillance and Diagnosis of Infectious Diseases, State Central Veterinary Laboratory, Ulaanbaatar, 17024, Mongolia
| | - Katarzyna Ropka-Molik
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047, Cracow, Poland
| | | | - Maria Susana Lopes
- Biotechnology Centre of Azores, University of Azores, 9700-042, Angra do Heroísmo, Portugal
| | | | | | - Liliya Kalinkova
- All-Russian Research Institute for Horse Breeding, Ryazan, 391105, Russia
| | - Alexander M Zaitev
- All-Russian Research Institute for Horse Breeding, Ryazan, 391105, Russia
| | - Miguel Novoa-Bravo
- Genética Animal de Colombia SAS., Av. Calle 26 #69-76, 111071, Bogotá, Colombia
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
- Department of Biosystems, Center for Animal Breeding and Genetics, KU Leuven, 3001, Leuven, Belgium
| | - Samantha Brooks
- Department of Animal Science, UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Laura Patterson Rosa
- Department of Agriculture and Industry, Sul Ross State University, Alpine, TX, 79832, USA
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Rytis Juras
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Tetsuo Kunieda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan.
| | - Barbara Wallner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| |
Collapse
|
5
|
Castaneda C, Radović L, Felkel S, Juras R, Davis BW, Cothran EG, Wallner B, Raudsepp T. Copy number variation of horse Y chromosome genes in normal equine populations and in horses with abnormal sex development and subfertility: relationship of copy number variations with Y haplogroups. G3 (BETHESDA, MD.) 2022; 12:jkac278. [PMID: 36227030 PMCID: PMC9713435 DOI: 10.1093/g3journal/jkac278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2023]
Abstract
Structural rearrangements like copy number variations in the male-specific Y chromosome have been associated with male fertility phenotypes in human and mouse but have been sparsely studied in other mammalian species. Here, we designed digital droplet PCR assays for 7 horse male-specific Y chromosome multicopy genes and SRY and evaluated their absolute copy numbers in 209 normal male horses of 22 breeds, 73 XY horses with disorders of sex development and/or infertility, 5 Przewalski's horses and 2 kulans. This established baseline copy number for these genes in horses. The TSPY gene showed the highest copy number and was the most copy number variable between individuals and breeds. SRY was a single-copy gene in most horses but had 2-3 copies in some indigenous breeds. Since SRY is flanked by 2 copies of RBMY, their copy number variations were interrelated and may lead to SRY-negative XY disorders of sex development. The Przewalski's horse and kulan had 1 copy of SRY and RBMY. TSPY and ETSTY2 showed significant copy number variations between cryptorchid and normal males (P < 0.05). No significant copy number variations were observed in subfertile/infertile males. Notably, copy number of TSPY and ETSTY5 differed between successive male generations and between cloned horses, indicating germline and somatic mechanisms for copy number variations. We observed no correlation between male-specific Y chromosome gene copy number variations and male-specific Y chromosome haplotypes. We conclude that the ampliconic male-specific Y chromosome reference assembly has deficiencies and further studies with an improved male-specific Y chromosome assembly are needed to determine selective constraints over horse male-specific Y chromosome gene copy number and their relation to stallion reproduction and male biology.
Collapse
Affiliation(s)
- Caitlin Castaneda
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Lara Radović
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Sabine Felkel
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Department of Biotechnology, Institute of Computational Biology, BOKU University of Life Sciences and Natural Resources, Vienna 1190, Austria
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Ernest Gus Cothran
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Barbara Wallner
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| |
Collapse
|