1
|
Zhang WT, Ge HW, Wei Y, Gao JL, Tian F, Zhou EC. Molecular characterization of PANoptosis-related genes in chronic kidney disease. PLoS One 2024; 19:e0312696. [PMID: 39466748 PMCID: PMC11515967 DOI: 10.1371/journal.pone.0312696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by fibrosis and inflammation in renal tissues. Several types of cell death have been implicated in CKD onset and progression. Unlike traditional forms of cell death, PANoptosis is characterized by the crosstalk among programmed cell death pathways. However, the interaction between PANoptosis and CKD remains unclear. Here, we used bioinformatics methods to identify differentially expressed genes and differentially expressed PANoptosis-related genes (DE-PRGs) using data from the GSE37171 dataset. Following this, we further performed gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and gene set enrichment analysis using the data. We adopted a combined approach to select hub genes, using the STRING database and CytoHubba plug-in, and we used the GSE66494 as a validation dataset. In addition, we constructed ceRNA, transcription factor (TF)-gene, and drug-gene networks using Cytoscape. Lastly, we conducted immunohistochemical analysis and western blotting to validate the hub genes. We identified 57 PANoptosis-associated genes as DE-PRGs. We screened nine hub genes from the 57 DE-PRGs. We identified two hub genes (FOS and PTGS2) using the GSE66494 database, Nephroseq, immunohistochemistry, and western blotting. A common miRNA (Hsa-miR-101-3p) and three TFs (CREB1, E2F1, and RELA) may play a crucial role in the onset and progression of PANoptosis-related CKD. In our analysis of the drug-gene network, we identified eight drugs targeting FOS and 52 drugs targeting PTGS2.
Collapse
Affiliation(s)
- Wen-tao Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-wei Ge
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-lin Gao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Tian
- Research Center of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - En-chao Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Wilson TK, Zishiri OT. Prostate Cancer: A Review of Genetics, Current Biomarkers and Personalised Treatments. Cancer Rep (Hoboken) 2024; 7:e70016. [PMID: 39410867 PMCID: PMC11480670 DOI: 10.1002/cnr2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Prostate cancer is the second leading cause of cancer deaths in men, second only to lung cancer. Despite this, diagnosis and prognosis methods remain limited, with effective treatments being few and far between. Traditionally, prostate cancer is initially tested for through a prostate serum antigen (PSA) test and a digital rectum examination (DRE), followed by confirmation through an invasive prostate biopsy. The DRE and biopsy are uncomfortable for the patient, so less invasive, accurate diagnostic tools are needed. Current diagnostic tools, along with genes that hold possible biomarker uses in diagnosis, prognosis and indications for personalised treatment plans, were reviewed in this article. RECENT FINDINGS Several genes from multiple families have been identified as possible biomarkers for disease, including those from the MYC and ETS families, as well as several tumour suppressor genes, Androgen Receptor signalling genes and DNA repair genes. There have also been advances in diagnostic tools, including MRI-targeted and liquid biopsies. Several personalised treatments have been developed over the years, including those that target metabolism-driven prostate cancer or those that target inflammation-driven cancer. CONCLUSION Several advances have been made in prostate cancer diagnosis and treatment, but the disease still grows year by year, leading to more and more deaths annually. This calls for even more research into this disease, allowing for better diagnosis and treatment methods and a better chance of patient survival.
Collapse
Affiliation(s)
- Trevor K. Wilson
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering, and ScienceUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Oliver T. Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering, and ScienceUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
3
|
Vempuluru VS, Maniar A, Bakal K, Kaliki S. Role of MYCN in retinoblastoma: A review of current literature. Surv Ophthalmol 2024; 69:697-706. [PMID: 38796108 DOI: 10.1016/j.survophthal.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Chromosomal abnormalities that involve the MYCN gene are rare; however, it is one of the most commonly mutated genes in retinoblastoma (RB) after the RB1 gene. MYCN is amplified in approximately 1-9 % of all RB tumors. It plays a role in RB oncogenesis via many mechanisms, including synergism with RB1 deletion, positive feedback with MDM2, upregulation of cell cycle regulating genes, upregulation of miRNA, and upregulation of glucose metabolism. MYCN amplifications are not mutually exclusive and can occur even in the presence of RB1 gene mutations. Clinically, RB1+/+MYCNA tumors present as sporadic, unilateral, advanced tumors in very young children and tend to follow an aggressive course. Magnetic resonance imaging features include peripheral tumor location, placoid configuration, retinal folding, tumor-associated hemorrhage, and anterior chamber enhancement. Genetic testing for MYCNA is especially recommended in patients with unilateral RB where genetic blood testing and tumor tissue show a lack of RB1 mutation. MYCN-targeted therapies are evolving and hold promise for the future.
Collapse
Affiliation(s)
- Vijitha S Vempuluru
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Arpita Maniar
- Duke Eye Center, Duke University, Durham, NC 27705, USA
| | - Komal Bakal
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad 500034, India.
| |
Collapse
|
4
|
Ma M, Zhu Y, Xiao C, Li R, Cao X, Kang R, Wang X, Li E. Novel insights into RB1 in prostate cancer lineage plasticity and drug resistance. TUMORI JOURNAL 2024; 110:252-263. [PMID: 38316605 DOI: 10.1177/03008916231225576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Prostate cancer is the second most common malignancy among men in the world, posing a serious threat to men's health and lives. RB1 is the first human tumor suppressor gene to be described, and it is closely associated with the development, progression, and suppression of a variety of tumors. It was found that the loss of RB1 is an early event in prostate cancer development and is closely related to prostate cancer development, progression and treatment resistance. This paper reviews the current status of research on the relationship between RB1 and prostate cancer from three aspects: RB1 and prostate cell lineage plasticity; biological behavior; and therapeutic resistance. Providing a novel perspective for developing new therapeutic strategies for RB1-loss prostate cancer.
Collapse
Affiliation(s)
- Min Ma
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yazhi Zhu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruidong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xingyu Cao
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ermao Li
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Wang S, Zhao Y, Yao F, Wei P, Ma L, Zhang S. An anti-GD2 aptamer-based bifunctional spherical nucleic acid nanoplatform for synergistic therapy targeting MDM2 for retinoblastoma. Biomed Pharmacother 2024; 174:116437. [PMID: 38522240 DOI: 10.1016/j.biopha.2024.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Retinoblastoma (RB) is a type of pediatric solid tumor in the fundus. The lack of precision therapies combined with the difficulty of delivering small interfering RNA (siRNA) into the eyes means that there is currently no nucleic acid-based therapy for RB in clinical practice. Here, we reported on anti-GD2 and glutathione-responsive spherical nucleic acids (SNAs), loaded with siRNA and the inhibitor NVP-CGM097, which jointly blocked the oncogenic factor n in RB cells (Y79 and WERI-RB-1). The SNAs were formed through the self-assembly of bifunctional cholesterol amphiphiles containing aptamers that specifically targeted GD2-positive RB cells, allowing for the formation of an SNA with a dense DNA shell. The aptamer/siRNA component functioned both as a carrier and a payload, enhancing the specific recognition and delivery of both components and constituting an active agent for MDM2 regulation. Following SNA endocytosis by RB cells, siRNA and NVP-CGM097 were released from the SNA particles by glutathione, which synergistically blocked the MDM2-p53 pathway, increasing p53 protein content and inducing cell apoptosis. This study showed a potent antitumor effect following intravitreal injection of SNAs in Y79 tumor-bearing mice through clinical manifestation and tumor pathological analysis. In hematological analysis and hepatotoxicity assays, SNAs were safer for mice than melphalan, the favored drug for treating RB in clinical practice. Our results illustrated the potential of intravitreally injected SNAs as a precision medicine for treating RB.
Collapse
Affiliation(s)
- Shijing Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, 18 Zetian Road, Futian District, Shenzhen 518040, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
| | - Yan Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Guangqiao Road, Guangming District, Shenzhen 518107, China
| | - Fei Yao
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, 18 Zetian Road, Futian District, Shenzhen 518040, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
| | - Pengxue Wei
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Guangqiao Road, Guangming District, Shenzhen 518107, China.
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, 18 Zetian Road, Futian District, Shenzhen 518040, China.
| |
Collapse
|
6
|
Wang M, Yan X, Dong Y, Li X, Gao B. Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment. PLoS Comput Biol 2024; 20:e1012113. [PMID: 38728362 PMCID: PMC11230636 DOI: 10.1371/journal.pcbi.1012113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/08/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.
Collapse
Affiliation(s)
- Meng Wang
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Xinyue Yan
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Yanan Dong
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Xiaoqin Li
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Bin Gao
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| |
Collapse
|
7
|
Figueiredo D, Marques IA, Pires AS, Cavaleiro CF, Costa LC, Castela G, Murta JN, Botelho MF, Abrantes AM. Risk of Second Tumors in Retinoblastoma Survivors after Ionizing Radiation: A Review. Cancers (Basel) 2023; 15:5336. [PMID: 38001596 PMCID: PMC10670427 DOI: 10.3390/cancers15225336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Retinoblastoma (RB) is the most common ocular neoplasm in children, whose development depends on two mutational events that occur in both alleles of the retinoblastoma susceptibility gene (RB1). Regarding the nature of these mutational events, RB can be classified as hereditary if the first event is a germline mutation and the second one is a somatic mutation in retina cells or nonhereditary if both mutational events occur in somatic cells. Although the rate of survival of RB is significantly elevated, the incidence of second malignant neoplasms (SMNs) is a concern, since SMNs are the main cause of death in these patients. Effectively, RB patients present a higher risk of SMN incidence compared to other oncology patients. Furthermore, evidence confirms that hereditary RB survivors are at a higher risk for SMNs than nonhereditary RB survivors. Over the decades, some studies have been performed to better understand this subject, evaluating the risk of the development of SMNs in RB patients. Furthermore, this risk seems to increase with the use of ionizing radiation in some therapeutic approaches commonly used in the treatment of RB. This review aims to clarify the effect of ionizing radiation in RB patients and to understand the association between the risk of SMN incidence in patients that underwent radiation therapy, especially in hereditary RB individuals.
Collapse
Affiliation(s)
- Diana Figueiredo
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.F.); (I.A.M.); (A.S.P.)
- University of Coimbra, Faculty of Sciences and Technology, 3000-548 Coimbra, Portugal
| | - Inês A. Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.F.); (I.A.M.); (A.S.P.)
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| | - Ana Salomé Pires
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.F.); (I.A.M.); (A.S.P.)
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061 Coimbra, Portugal; (G.C.); (J.N.M.)
| | - Claudia F. Cavaleiro
- Medical Imaging and Radiotherapy Department, Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, 3045-093 Coimbra, Portugal; (C.F.C.); (L.C.C.)
| | - Luís C. Costa
- Medical Imaging and Radiotherapy Department, Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, 3045-093 Coimbra, Portugal; (C.F.C.); (L.C.C.)
| | - Guilherme Castela
- Clinical Academic Centre of Coimbra (CACC), 3000-061 Coimbra, Portugal; (G.C.); (J.N.M.)
- Pediatric Oncology Service, Centro Hospitalar Universitário de Coimbra, 3000-602 Coimbra, Portugal
- Department of Ophthalmology, Centro de Responsabilidade Integrado de Oftalmologia, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Joaquim N. Murta
- Clinical Academic Centre of Coimbra (CACC), 3000-061 Coimbra, Portugal; (G.C.); (J.N.M.)
- Department of Ophthalmology, Centro de Responsabilidade Integrado de Oftalmologia, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.F.); (I.A.M.); (A.S.P.)
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061 Coimbra, Portugal; (G.C.); (J.N.M.)
| | - Ana Margarida Abrantes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.F.); (I.A.M.); (A.S.P.)
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061 Coimbra, Portugal; (G.C.); (J.N.M.)
- Medical Imaging and Radiotherapy Department, Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, 3045-093 Coimbra, Portugal; (C.F.C.); (L.C.C.)
| |
Collapse
|
8
|
Linh DNH, Van Huy N, Nguyen P, Le Thi P, Tuan HA, Van Nguyen T, Tran TH, Tran HA, Ta TD, Pham TLA, Bui T, Tran TH, Van Ta T, Tran V. Mutation spectrum of retinoblastoma patients in Vietnam. Mol Genet Genomic Med 2023; 11:e2244. [PMID: 37548407 PMCID: PMC10655509 DOI: 10.1002/mgg3.2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Retinoblastoma (RB), an intraocular malignancy commonly diagnosed in children, is mostly caused by inactivating mutations of both alleles of the RB1 gene. Early genetic screening for RB1 gene mutations would greatly improve treatment outcomes and patient management. METHODS In this study, both somatic and germline mutations were detected in blood and tumour samples of 42 RB patients using direct sequencing and multiplex ligation-dependent probe amplification. RESULTS In total, 34 different mutations were found in 36 patients, including 1 SNP, 4 large deletions, 5 splicing sites, 1 missense, 7 frameshifts and 17 nonsense mutations. There were five novel mutations and one unreported which have not been found in large databases such as Leiden Open Variation Database (LOVD) and ClinVar. CONCLUSION A higher rate of RB patients carrying heterozygous germline mutation and highly prevalent with pathogenic truncated mutation, hence, early detection of RB is essential for vision salvation and genetic counselling.
Collapse
Affiliation(s)
- Dao Nguyen Ha Linh
- Hanoi Medical UniversityHanoiVietnam
- National Institute of OphthalmologyHanoiVietnam
| | | | | | | | | | | | - Thu Ha Tran
- National Institute of OphthalmologyHanoiVietnam
| | | | | | | | - The‐Hung Bui
- Hanoi Medical UniversityHanoiVietnam
- Center for Molecular Medicine, Clinical Genetics UnitKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Thinh Huy Tran
- Hanoi Medical UniversityHanoiVietnam
- Hanoi Medical University Hospital, Hanoi Medical UniversityHanoiVietnam
| | - Thanh Van Ta
- Hanoi Medical UniversityHanoiVietnam
- Hanoi Medical University Hospital, Hanoi Medical UniversityHanoiVietnam
| | | |
Collapse
|
9
|
Marković L, Bukovac A, Varošanec AM, Šlaus N, Pećina-Šlaus N. Genetics in ophthalmology: molecular blueprints of retinoblastoma. Hum Genomics 2023; 17:82. [PMID: 37658463 PMCID: PMC10474694 DOI: 10.1186/s40246-023-00529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023] Open
Abstract
This review presents current knowledge on the molecular biology of retinoblastoma (RB). Retinoblastoma is an intraocular tumor with hereditary and sporadic forms. 8,000 new cases of this ocular malignancy of the developing retina are diagnosed each year worldwide. The major gene responsible for retinoblastoma is RB1, and it harbors a large spectrum of pathogenic variants. Tumorigenesis begins with mutations that cause RB1 biallelic inactivation preventing the production of functional pRB proteins. Depending on the type of mutation the penetrance of RB is different. However, in small percent of tumors additional genes may be required, such as MYCN, BCOR and CREBBP. Additionally, epigenetic changes contribute to the progression of retinoblastoma as well. Besides its role in the cell cycle, pRB plays many additional roles, it regulates the nucleosome structure, participates in apoptosis, DNA replication, cellular senescence, differentiation, DNA repair and angiogenesis. Notably, pRB has an important role as a modulator of chromatin remodeling. In recent years high-throughput techniques are becoming essential for credible biomarker identification and patient management improvement. In spite of remarkable advances in retinoblastoma therapy, primarily in high-income countries, our understanding of retinoblastoma and its specific genetics still needs further clarification in order to predict the course of this disease and improve therapy. One such approach is the tumor free DNA that can be obtained from the anterior segment of the eye and be useful in diagnostics and prognostics.
Collapse
Affiliation(s)
- Leon Marković
- Department of Ophthalmology, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital "Sveti Duh", Zagreb, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anja Bukovac
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000, Zagreb, Croatia
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000, Zagreb, Croatia
| | - Ana Maria Varošanec
- Department of Ophthalmology, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital "Sveti Duh", Zagreb, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Nika Šlaus
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000, Zagreb, Croatia
| | - Nives Pećina-Šlaus
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000, Zagreb, Croatia.
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000, Zagreb, Croatia.
| |
Collapse
|
10
|
Sadeghi R, Pirankuraim H, Javanshir ST, Arabi M, Bereimipour A, Javanshir HT, Mahmoodzadeh H, Nayernia K. Risk of secondary tumours in patients with non-metastatic and metastatic human retinoblastoma. Eye (Lond) 2023; 37:2327-2334. [PMID: 36528757 PMCID: PMC10366135 DOI: 10.1038/s41433-022-02345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Retinoblastoma is an intraocular cancer in children and infants. Despite all the available treatment options and high survival rates in children with retinoblastoma, exposure to secondary tumours in adulthood is one of the concerns that physicians face. In many cases, dysfunction of the RB1 gene is the main cause of secondary tumours due to retinoblastoma. Therefore, the aim of this study was to evaluate the incidence of other secondary tumours in children with retinoblastoma. METHODS In this regard, we performed continuous and integrated bioinformatics analyses to find genes, protein products, and signal pathways involved in other cancers. RESULTS 1170 high-expression genes and 960 low-expression genes between non-invasive and invasive retinoblastoma were isolated. After examining the signal pathways, we observed bladder cancer and small cell lung cancer in the overexpressed genes. We also observed 5 cancers of endometriosis, prostate, non-small cell lung cancer, glioblastoma and renal cell carcinoma in low-expression genes. Based on the P-value index, non-small cell lung cancer, prostate and bladder cancers had the highest risk, and endometriosis cancer showed a lower probability of developing a secondary tumour in patients with retinoblastoma. In addition, the network between proteins also showed us that TP53, CDK2, SRC, MAPK1 proteins with high expression and JUN, HSP90AA1, and UBC proteins with low-expression play a significant role in candidate cancers. CONCLUSION Lastly, we used continuous bioinformatics analysis to show that seven cancers are strongly linked to retinoblastoma cancer. Of course, more research is needed to find the best way to care for children who have been treated for retinoblastoma.
Collapse
Affiliation(s)
- Reza Sadeghi
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hanieh Pirankuraim
- Medical Genomics Research Center, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | | | - Maryam Arabi
- Medical Genomics Research Center, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Bereimipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Habibollah Mahmoodzadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center (BDRC), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Karim Nayernia
- International Center for Personalized Medicine (P7MEDICINE), 40235, Düsseldorf, Germany
| |
Collapse
|
11
|
Rollins NK. Association between MRI Findings and Causative Variations in Unilateral Retinoblastoma. Radiology 2023; 307:e230852. [PMID: 37191487 DOI: 10.1148/radiol.230852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Nancy K Rollins
- From the Department of Radiology, UMC Health System, 602 Indiana Blvd, Lubbock, TX 79415-3364
| |
Collapse
|
12
|
Sánchez-Cañal B, Bosch Canto V. Presence of cataract in patients treated for retinoblastoma at the national institute of pediatrics in Mexico (2011-2021). J Fr Ophtalmol 2023; 46:216-222. [PMID: 36642598 DOI: 10.1016/j.jfo.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 01/15/2023]
Abstract
PURPOSE The goal of this study is to describe the presence of secondary cataract in patients with retinoblastoma treated at the National Institute of Pediatrics of Mexico (INP) over the past 10 years. METHODS This was a single center observational, retrospective and descriptive study. We included all eyes diagnosed with retinoblastoma and cataract between June 2011 and June 2021. RESULTS In total, 833 records of patients diagnosed with Retinoblastoma at the National Institute of Pediatrics during the period between June 2011 and June 2021 were reviewed. Out of all of them, only 14 developed cataract (1.6%). The median age at retinoblastoma diagnosis was 10.5 months (Rank: 6-13 months), and the median age at cataract diagnosis was 51.5 months (Rank: 25-73 months). The majority (13, 92.9%) of the patients had bilateral involvement. 42% of the eyes were Stage D according to the international classification of retinoblastoma. Cryotherapy was applied in 57.1%, intravitreal chemotherapy in 85.7%, radiation therapy in 42.6%, and only 7.1% of cases were treated with intra-arterial chemotherapy. CONCLUSIONS The presence of cataract in patients with retinoblastoma is a rare but important entity impacting the development of vision in children and detection of intraocular tumors. These probably occur late as a result of the multiple treatments to which the children have been subjected, without being able to determine in this study which is the risk factor most associated with the development of this pathology.
Collapse
Affiliation(s)
- B Sánchez-Cañal
- Insurgentes Sur 3700 Letra C, Insurgentes Cuicuilco, 04530 Mexico City, CDMX, Mexico.
| | - V Bosch Canto
- Insurgentes Sur 3700 Letra C, Insurgentes Cuicuilco, 04530 Mexico City, CDMX, Mexico
| |
Collapse
|
13
|
Ahmad O, Försti A. The complementary roles of genome-wide approaches in identifying genes linked to an inherited risk of colorectal cancer. Hered Cancer Clin Pract 2023; 21:1. [PMID: 36707860 PMCID: PMC9883872 DOI: 10.1186/s13053-023-00245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
The current understanding of the inherited risk of colorectal cancer (CRC) started with an observational clinical era in the late 19th century, which was followed by a genetic era starting in the late 20th century. Genome-wide linkage analysis allowed mapping several high-risk genes, which marked the beginning of the genetic era. The current high-throughput genomic phase includes genome-wide association study (GWAS) and genome-wide sequencing approaches which have revolutionized the conception of the inherited risk of CRC. On the one hand, GWAS has allowed the identification of multiple low risk loci correlated with CRC. On the other, genome-wide sequencing has led to the discovery of a second batch of high-to-moderate-risk genes that correlate to atypical familial CRC and polyposis syndromes. In contrast to other common cancers, which are usually dominated by a polygenic background, CRC risk is believed to be equally explained by monogenic and polygenic architectures, which jointly contribute to a quarter of familial clustering. Despite the fact that genome-wide approaches have allowed the identification of a continuum of responsible high-to-moderate-to-low-risk variants, much of the predisposition and familial clustering of CRC has not yet been explained. Other genetic, epigenetic and environmental factors might be playing important roles as well. In this review we aim to provide insights on the complementary roles played by different genomic approaches in allowing the current understanding of the genetic architecture of inherited CRC.
Collapse
Affiliation(s)
- Olfat Ahmad
- grid.510964.fHopp Children’s Cancer Center (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany ,grid.4991.50000 0004 1936 8948University of Oxford, Oxford, UK ,grid.419782.10000 0001 1847 1773King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Asta Försti
- grid.510964.fHopp Children’s Cancer Center (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
14
|
β-asarone attenuates the proliferation, migration and enhances apoptosis of retinoblastoma through Wnt/β-catenin signaling pathway. Int Ophthalmol 2022; 43:1687-1699. [PMID: 36372820 DOI: 10.1007/s10792-022-02566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/16/2022] [Indexed: 11/14/2022]
Abstract
PURPOSE β-asarone is the prime component of essential oil extracted from Acori graminei Rhizoma, which plays an inhibitory role in various tumors. Here, we aim to investigate the functions as well as the mechanism of β-asarone in retinoblastoma (RB). METHODS RB cell lines SO-Rb50 and HXO-Rb44 were treated with different doses of β-asarone. Then, CCK8 and BrdU experiments were adopted to examine the RB cell proliferation. Wound healing test and Transwell assay were employed to detect cell migration and invasion. RB cell apoptosis was tested by flow cytometry and Western blot. An RB cell xenograft model was constructed on nude mice for testing the role of β-asarone on RB cell growth in vivo. RT-PCR and Western blot were used to determine the effect of β-asarone on Wnt/β-catenin signaling pathway. Furthermore, the Wnt/β-catenin pathway inhibitor PNU-74654 and activator HLY78 were administered to RB cells for confirming the effects of β-asarone in Wnt/β-catenin pathway. RESULTS In vivo experiment showed that β-asarone attenuated SO-Rb50 cell growth in nude mice. Further research found that β-asarone significantly repressed Wnt/β-catenin canonical pathway activation. CONCLUSION Prior inhibition of Wnt/β-catenin pathway abolished the antitumor effects induced by β-asarone. β-asarone exerted antitumor effects in RB cells by inactivating the Wnt/β-catenin signaling pathway.
Collapse
|
15
|
Farhat W, Yeung V, Ross A, Kahale F, Boychev N, Kuang L, Chen L, Ciolino JB. Advances in biomaterials for the treatment of retinoblastoma. Biomater Sci 2022; 10:5391-5429. [PMID: 35959730 DOI: 10.1039/d2bm01005d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinoblastoma is the most common primary intraocular malignancy in children. Although traditional chemotherapy has shown some success in retinoblastoma management, there are several shortcomings to this approach, including inadequate pharmacokinetic parameters, multidrug resistance, low therapeutic efficiency, nonspecific targeting, and the need for adjuvant therapy, among others. The revolutionary developments in biomaterials for drug delivery have enabled breakthroughs in cancer management. Today, biomaterials are playing a crucial role in developing more efficacious retinoblastoma treatments. The key goal in the evolution of drug delivery biomaterials for retinoblastoma therapy is to resolve delivery-associated obstacles and lower nonlocal exposure while ameliorating certain adverse effects. In this review, we will first delve into the historical perspective of retinoblastoma with a focus on the classical treatments currently used in clinics to enhance patients' quality of life and survival rate. As we move along, we will discuss biomaterials for drug delivery applications. Various aspects of biomaterials for drug delivery will be dissected, including their features and recent advances. In accordance with the current advances in biomaterials, we will deliver a synopsis on the novel chemotherapeutic drug delivery strategies and evaluate these approaches to gain new insights into retinoblastoma treatment.
Collapse
Affiliation(s)
- Wissam Farhat
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Amy Ross
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Francesca Kahale
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Nikolay Boychev
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Lin Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA. .,Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Joseph B Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
16
|
Yao Y, Gu X, Xu X, Ge S, Jia R. Novel insights into RB1 mutation. Cancer Lett 2022; 547:215870. [PMID: 35964818 DOI: 10.1016/j.canlet.2022.215870] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 01/09/2023]
Abstract
Since the discovery of the retinoblastoma susceptibility gene (RB1) decades ago, RB1 has been regarded as a prototype tumor suppressor gene providing a paradigm for tumor genetic research. Constant research has updated the understanding of RB1-related pathways and their impact on tumor and nontumor diseases. Mutation of RB1 gene has been observed in multiple types of malignant tumors including prostate cancer, lung cancer, breast cancer, and almost every familial and sporadic case of retinoblastoma. Even if well-known and long-investigated, the application potential of RB1 mutation has not been fully tapped. In this review, we focus on the mechanism underlying RB1 mutation during oncogenesis. Therapeutically, we have further discussed potential clinical strategies by targeting RB1-mutated cancers. The unsolved problems and prospects of RB1 mutation are also discussed.
Collapse
Affiliation(s)
- Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
17
|
Prochownik EV, Wang H. Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells 2022; 11:747. [PMID: 35203395 PMCID: PMC8870482 DOI: 10.3390/cells11040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Among the first discovered and most prominent cellular oncogenes is MYC, which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network. It is comprised of the Myc-like factors ChREBP and MondoA, which, in association with the Max-like member Mlx, regulate smaller and more functionally restricted repertoires of target genes, some of which are shared with Myc. Opposing ChREBP and MondoA are heterodimers comprised of Mlx and Mxd1, Mxd4 and Mnt, which also structurally and operationally link the two Networks. We discuss here the functions of these "Extended Myc Network" members, with particular emphasis on their roles in suppressing normal and neoplastic growth. These roles are complex due to the temporal- and tissue-restricted expression of Extended Myc Network proteins in normal cells, their regulation of both common and unique target genes and, in some cases, their functional redundancy.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- The Hillman Cancer Center of UPMC, Pittsburgh, PA 15224, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15224, USA
| | - Huabo Wang
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
18
|
Ji F, Dai C, Xin M, Zhang J, Zhang Y, Liu S. Long intergenic non-protein coding RNA 115 (LINC00115) aggravates retinoblastoma progression by targeting microRNA miR-489-3p that downregulates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2). Bioengineered 2022; 13:5330-5343. [PMID: 35184643 PMCID: PMC8973781 DOI: 10.1080/21655979.2022.2037362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Fang Ji
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Chunhua Dai
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Meng Xin
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Jing Zhang
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yuru Zhang
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shu Liu
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
19
|
Le Gall J, Dehainault C, Benoist C, Matet A, Lumbroso-Le Rouic L, Aerts I, Jiménez I, Schleiermacher G, Houdayer C, Radvanyi F, Frouin E, Renault V, Doz F, Stoppa-Lyonnet D, Gauthier-Villars M, Cassoux N, Golmard L. Highly Sensitive Detection Method of Retinoblastoma Genetic Predisposition and Biomarkers. J Mol Diagn 2021; 23:1714-1721. [PMID: 34656762 DOI: 10.1016/j.jmoldx.2021.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/15/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Retinoblastoma is a malignant tumor of the infant retina. Nearly half of patients are predisposed to retinoblastoma by a germline RB1 pathogenic variant. Nonhereditary retinoblastoma is mainly caused by inactivation of both RB1 alleles at a somatic level. Several polymorphisms have been reported as biomarkers of retinoblastoma risk, aggressiveness, or invasion. The most informative genetic testing is obtained from tumor DNA. Historically, access to tumor DNA has been warranted by the frequent indication of enucleation, which has decreased because of advances in conservative approaches. Recent studies showed that tumor cell-free DNA can be analyzed in aqueous humor from retinoblastoma patients. This report describes a next-generation sequencing method relying on unique molecular identifiers for a highly sensitive detection of retinoblastoma genetic predisposition and biomarkers in a single analysis. It is the first use of unique molecular identifiers for retinoblastoma genetics. This gene panel enables the detection of RB1 point variants, large genome rearrangements, and loss of heterozygosity. It is adapted for genomic DNA extracted from blood or tumor DNA extracted from tumor fragment, aqueous humor, or plasma. The access to tumor cell-free DNA improves the diagnosis of genetic predisposition in case of conservative ocular therapy and provides access to biomarkers guiding the treatment strategy. The analysis of a gene panel is cost-effective and can be easily implemented in diagnostic laboratories.
Collapse
Affiliation(s)
- Jessica Le Gall
- Department of Genetics, Institut Curie, Paris, France; PSL Research University, Paris, France
| | - Catherine Dehainault
- Department of Genetics, Institut Curie, Paris, France; PSL Research University, Paris, France
| | - Camille Benoist
- PSL Research University, Paris, France; Bioinformatics Unit, Institut Curie, Paris, France
| | - Alexandre Matet
- Department of Ocular Oncology, Institut Curie, Paris, France; Université de Paris, Paris, France
| | - Livia Lumbroso-Le Rouic
- PSL Research University, Paris, France; Department of Ophthalmology, Institut Curie, Paris, France
| | - Isabelle Aerts
- PSL Research University, Paris, France; Oncology Center SIREDO, Institut Curie, Paris, France
| | - Irene Jiménez
- PSL Research University, Paris, France; Oncology Center SIREDO, Institut Curie, Paris, France; INSERM U830, Institut Curie, Paris, France
| | - Gudrun Schleiermacher
- PSL Research University, Paris, France; Oncology Center SIREDO, Institut Curie, Paris, France; INSERM U830, Institut Curie, Paris, France
| | - Claude Houdayer
- Department of Genetics, Rouen University Hospital and Inserm U1245, Rouen University (UNIROUEN), Normandie University, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - François Radvanyi
- PSL Research University, Paris, France; Molecular Oncology Team, CNRS, UMR144, Institut Curie, Paris, France
| | - Eleonore Frouin
- PSL Research University, Paris, France; Bioinformatics Unit, Institut Curie, Paris, France
| | - Victor Renault
- PSL Research University, Paris, France; Bioinformatics Unit, Institut Curie, Paris, France
| | - François Doz
- Université de Paris, Paris, France; Oncology Center SIREDO, Institut Curie, Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR144, Equipe Labellisée Ligue Contre le Cancer, Institut Curie, Paris, France
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France; Université de Paris, Paris, France; INSERM U830, Institut Curie, Paris, France
| | - Marion Gauthier-Villars
- Department of Genetics, Institut Curie, Paris, France; PSL Research University, Paris, France
| | - Nathalie Cassoux
- Department of Ocular Oncology, Institut Curie, Paris, France; Université de Paris, Paris, France
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France; PSL Research University, Paris, France.
| |
Collapse
|
20
|
Poly ADP Ribose Polymerase Inhibitor Olaparib Targeting Microhomology End Joining in Retinoblastoma Protein Defective Cancer: Analysis of the Retinoblastoma Cell-Killing Effects by Olaparib after Inducing Double-Strand Breaks. Int J Mol Sci 2021; 22:ijms221910687. [PMID: 34639028 PMCID: PMC8508856 DOI: 10.3390/ijms221910687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Retinoblastoma is the most common intraocular cancer in childhood. Loss of function in both copies of the RB1 gene is the causal mutation of retinoblastoma. Current treatment for retinoblastoma includes the use of chemotherapeutic agents, such as the DNA damaging agent etoposide, which is a topoisomerase II poison that mainly generates DNA double-strand breaks (DSBs) and genome instability. Unfaithful repairing of DSBs could lead to secondary cancers and serious side effects. Previously, we found that RB knocked-down mammalian cells depend on a highly mutagenic pathway, the micro-homology mediated end joining (MMEJ) pathway, to repair DSBs. Poly ADP ribose polymerase 1 (PARP1) is a major protein in promoting the MMEJ pathway. In this study, we explored the effects of olaparib, a PARP inhibitor, in killing retinoblastoma cells. Retinoblastoma cell line Y79 and primary retinoblastoma cells expressed the cone-rod homeobox protein (CRX), a photoreceptor-specific marker. No detectable RB expression was found in these cells. The co-treatment of olaparib and etoposide led to enhanced cell death in both the Y79 cells and the primary retinoblastoma cells. Our results demonstrated the killing effects in retinoblastoma cells by PARP inhibitor olaparib after inducing DNA double-strand breaks. The use of olaparib in combination with etoposide could improve the cell-killing effects. Thus, lower dosages of etoposide can be used to treat retinoblastoma, which would potentially lead to a lower level of DSBs and a relatively more stable genome.
Collapse
|
21
|
Linn P, Kohno S, Sheng J, Kulathunga N, Yu H, Zhang Z, Voon D, Watanabe Y, Takahashi C. Targeting RB1 Loss in Cancers. Cancers (Basel) 2021; 13:cancers13153737. [PMID: 34359636 PMCID: PMC8345210 DOI: 10.3390/cancers13153737] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Irreversible defects in RB1 tumor suppressor functions often predict poor outcomes in cancer patients. However, the RB1-defecient status can be a benefit as well for them, as it generates a variety of vulnerabilities induced through the upregulation of RB1 targets, relief from functional restrictions due to RB1 binding, presence of genes whose inactivation cause synthetic lethality with RB1 loss, or collateral synthetic lethality owing to simultaneous loss of neighboring genes. Abstract Retinoblastoma protein 1 (RB1) is encoded by a tumor suppressor gene that was discovered more than 30 years ago. Almost all mitogenic signals promote cell cycle progression by braking on the function of RB1 protein through mono- and subsequent hyper-phosphorylation mediated by cyclin-CDK complexes. The loss of RB1 function drives tumorigenesis in limited types of malignancies including retinoblastoma and small cell lung cancer. In a majority of human cancers, RB1 function is suppressed during tumor progression through various mechanisms. The latter gives rise to the acquisition of various phenotypes that confer malignant progression. The RB1-targeted molecules involved in such phenotypic changes are good quarries for cancer therapy. Indeed, a variety of novel therapies have been proposed to target RB1 loss. In particular, the inhibition of a number of mitotic kinases appeared to be synthetic lethal with RB1 deficiency. A recent study focusing on a neighboring gene that is often collaterally deleted together with RB1 revealed a pharmacologically targetable vulnerability in RB1-deficient cancers. Here we summarize current understanding on possible therapeutic approaches targeting functional or genomic aberration of RB1 in cancers.
Collapse
Affiliation(s)
- Paing Linn
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
- Yangon General Hospital, Yangon, Myanmar
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Jindan Sheng
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Nilakshi Kulathunga
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Hai Yu
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Zhiheng Zhang
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Dominic Voon
- Institute of Frontier Sciences Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | | | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
- Correspondence: ; Tel.: +81-76-264-6750; Fax: +81-76-234-4521
| |
Collapse
|
22
|
Gao L, Wu ZX, Assaraf YG, Chen ZS, Wang L. Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resist Updat 2021; 57:100770. [PMID: 34175687 DOI: 10.1016/j.drup.2021.100770] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
The cytotoxic anti-cancer drugs cisplatin, paclitaxel, doxorubicin, 5-fluorouracil (5-FU), as well as targeted drugs including imatinib, erlotinib, and nivolumab, play key roles in clinical cancer treatment. However, the frequent emergence of drug resistance severely comprosises their anti-cancer efficacy. A number of studies indicated that loss of function of tumor suppressor genes (TSGs) is involved in the development of cancer drug resistance, apart from decreased drug influx, increased drug efflux, induction of anti-apoptosis mechanisms, alterations in tumor microenvironment, drug compartmentalization, enhanced DNA repair and drug inactivation. TSGs are involved in the pathogenesis of tumor formation through regulation of DNA damage repair, cell apoptosis, autophagy, proliferation, cell cycle progression, and signal transduction. Our increased understanding of TSGs in the past decades demonstrates that gene mutation is not the only reason that leads to the inactivation of TSGs. Loss of function of TSGs may be based on the ubiquitin-proteasome pathway, epigenetic and transcriptional regualtion, post-translation modifications like phosphorylation as well as cellular translocation of TSGs. As the above processes can constitute"druggable targets", these mechanisms provide novel therapeutic approaches in targeting TSGs. Some small molecule compounds targeting these approaches re-activated TSGs and reversed cancer drug resistance. Along this vein, functional restoration of TSGs is a novel and promising approach to surmount cancer drug resistance. In the current review, we draw a scenario based on the role of loss of function of TSGs in drug resistance, on mechanisms leading to inactivation of TSGs and on pharmacological agents acting on these mechanisms to overcome cancer drug resistance. This review discusses novel therapeutic strategies targeting TSGs and offers possible modalities to conquer cancer drug resistance.
Collapse
Affiliation(s)
- Lingyue Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY, 11439, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY, 11439, USA.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
23
|
The evolution of multicellularity and cancer: views and paradigms. Biochem Soc Trans 2021; 48:1505-1518. [PMID: 32677677 DOI: 10.1042/bst20190992] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Conceptually and mechanistically, the evolution of multicellularity required the integration of single cells into new functionally, reproductively and evolutionary stable multicellular individuals. As part of this process, a change in levels of selection occurred, with selection at the multicellular level overriding selection at the cell level. The stability of multicellular individuals is dependent on a combination of mechanisms that supress within-group evolution, by both reducing the occurrence of somatic mutations as well as supressing somatic selection. Nevertheless, mutations that, in a particular microenvironment, confer mutant lineages a fitness advantage relative to normal somatic cells do occur, and can result in cancer. This minireview highlights several views and paradigms that relate the evolution of multicellularity to cancer. As a phenomenon, cancer is generally understood as a failure of multicellular systems to suppress somatic evolution. However, as a disease, cancer is interpreted in different frameworks: (i) a breakdown of cooperative behaviors underlying the evolution of multicellularity, (ii) a disruption of molecular networks established during the emergence of multicellularity to impose constraints on single-celled units, or (iii) an atavistic state resulting from reactivating primitive programs that originated in the earliest unicellular species. A number of assumptions are common in all the views relating cancer as a disease to the evolution of multicellularity. For instance, cancer is considered a reversal to unicellularity, and cancer cells are thought to both resemble unicellular organisms and benefit from ancestral-like traits. Nevertheless, potential limitations of current paradigms should be acknowledged as different perspectives can provide novel insights with potential therapeutic implications.
Collapse
|
24
|
The Rapidly Expanding Group of RB1-Deleted Soft Tissue Tumors: An Updated Review. Diagnostics (Basel) 2021; 11:diagnostics11030430. [PMID: 33802620 PMCID: PMC8000249 DOI: 10.3390/diagnostics11030430] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
The classification of soft tissue tumors has evolved considerably in the last decade, largely due to advances in understanding the pathogenetic basis of many of these, sometimes rare, tumors. Deletion of Retinoblastoma 1 (RB1), a well-known tumor suppressor gene, has been implicated in the tumorigenesis of a particular group of soft tissue neoplasms. This group of so-called “RB1-deleted soft tissue tumors” has been rapidly expanding in recent years, currently consisting of spindle cell/pleomorphic lipoma, atypical spindle cell/pleomorphic lipomatous tumor, pleomorphic liposarcoma, myofibroblastoma, cellular angiofibroma, and acral fibromyxoma. Most of these neoplasms, except pleomorphic liposarcoma, are considered benign entities and are mainly described in the older adult population. This article will review the currently known morphological, immunohistochemical, and molecular features of this heterogeneous group of mesenchymal tumors with an emphasis on differential diagnosis.
Collapse
|
25
|
Zhang X, Sjöblom T. Targeting Loss of Heterozygosity: A Novel Paradigm for Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:ph14010057. [PMID: 33450833 PMCID: PMC7828287 DOI: 10.3390/ph14010057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Loss of heterozygosity (LOH) is a common genetic event in the development of cancer. In certain tumor types, LOH can affect more than 20% of the genome, entailing loss of allelic variation in thousands of genes. This reduction of heterozygosity creates genetic differences between tumor and normal cells, providing opportunities for development of novel cancer therapies. Here, we review and summarize (1) mutations associated with LOH on chromosomes which have been shown to be promising biomarkers of cancer risk or the prediction of clinical outcomes in certain types of tumors; (2) loci undergoing LOH that can be targeted for development of novel anticancer drugs as well as (3) LOH in tumors provides up-and-coming possibilities to understand the underlying mechanisms of cancer evolution and to discover novel cancer vulnerabilities which are worth a further investigation in the near future.
Collapse
|
26
|
Watanabe T, Nanamiya H, Kojima M, Nomura S, Furukawa S, Soeda S, Tanaka D, Isogai T, Imai JI, Watanabe S, Fujimori K. Clinical relevance of oncogenic driver mutations identified in endometrial carcinoma. Transl Oncol 2021; 14:101010. [PMID: 33450701 PMCID: PMC7810788 DOI: 10.1016/j.tranon.2021.101010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 01/03/2021] [Indexed: 02/09/2023] Open
Abstract
Comprehensive somatic mutations profiling in endometrial carcinoma. Relationships between somatic mutations and clinicopathological characteristics. Relatiohship between FBXW7 mutation and vascular invasion in endometrial carcinoma. FGFR2 mutations are related with deep myometrial invasion in endometrial carcinoma.
Purpose Endometrial carcinoma (EC) is a clinically heterogeneous disease characterized by a number of different histological subtypes, and its heterogeneity may be involved in the accumulation of multiple genetic alterations. The aim of this work was to investigate the comprehensive mutational profile of EC tumors, and examine the associations between somatic mutations and clinicopathological features or survival in EC patients. Methods A total of 100 surgical tumors were obtained from EC patients who had previously undergone surgery. Genomic DNA samples extracted from fresh-frozen tissues were analyzed using the Ion AmpliSeq Cancer Hotspot Panel v2 Kit, covering 50 tumor-related genes. Results Validated mutations were detected in 91 of the 100 tumors (91%) and identified in eight of the most frequently mutated genes, namely PTEN (57%), PIK3CA (51%), TP53 (30%), KRAS (23%), CTNNB1 (21%), FBFR2 (13%), FBXW7(10%) and RB1 (9%). PTEN mutations were found to associated with young age (< 60), early-stage, endometrioid histology, non-recurrence and better overall survival (OS). CTNNB1 mutations were associated with young age, endometrioid histology and better OS. On the other hands, TP53 mutations were associated with late-stage, non-endometrioid histology, high-grade, recurrence and worse OS. FBWX7 mutations were associated with late-stage, vascular invasion and lymph node metastasis. FGFR2 mutations correlated with deep (≥ 1/2) myometrial invasion. Conclusion Our comprehensive mutational profile will be useful for understanding and evaluating the molecular characteristics of EC tumors, and may lead to the establishment of novel treatment strategies that improve the survival of patients with EC in the future.
Collapse
Affiliation(s)
- Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Hideaki Nanamiya
- Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Manabu Kojima
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Shinji Nomura
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Shigenori Furukawa
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Daisuke Tanaka
- Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Takao Isogai
- Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Jun-Ichi Imai
- Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
27
|
Urtasun Erburu A, Herrero Cervera MJ, Cañete Nieto A. Cancer in the first 18 months of life. An Pediatr (Barc) 2020. [DOI: 10.1016/j.anpede.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Hong FU, Castro M, Linse K. Tumor-specific lytic path “hyperploid progression mediated death”: Resolving side effects through targeting retinoblastoma or p53 mutant. World J Clin Oncol 2020; 11:854-867. [PMID: 33312882 PMCID: PMC7701912 DOI: 10.5306/wjco.v11.i11.854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
A major advance was made to reduce the side effects of cancer therapy via the elucidation of the tumor-specific lytic path “hyperploid progression-mediated death” targeting retinoblastoma (Rb) or p53-mutants defective in G1 DNA damage checkpoint. The genetic basis of human cancers was uncovered through the cloning of the tumor suppressor Rb gene. It encodes a nuclear DNA-binding protein whose self-interaction is regulated by cyclin-dependent kinases. A 3D-structure of Rb dimer is shown, confirming its multimeric status. Rb assumes a central role in cell cycle regulation and the “Rb pathway” is universally inactivated in human cancers. Hyperploidy refers to a state in which cells contain one or more extra chromosomes. Hyperploid progression occurs due to continued cell-cycling without cytokinesis in G1 checkpoint-defective cancer cells. The evidence for the triggering of hyperploid progression-mediated death in RB-mutant human retinoblastoma cells is shown. Hence, the very genetic mutation that predisposes to cancer can be exploited to induce lethality. The discovery helped to establish the principle of targeted cytotoxic cancer therapy at the mechanistic level. By triggering the lytic path, targeted therapy with tumor specificity at the genetic level can be developed. It sets the stage for systematically eliminating side effects for cytotoxic cancer therapy.
Collapse
Affiliation(s)
- Frank-Un Hong
- Department of Research and Development, Bio-Synthesis, Lewisville, TX 75057, United States
| | - Miguel Castro
- Department of Research and Development, Bio-Synthesis, Lewisville, TX 75057, United States
| | - Klaus Linse
- Department of Research and Development, Bio-Synthesis, Lewisville, TX 75057, United States
| |
Collapse
|
29
|
Zeng Y, He T, Liu J, Li Z, Xie F, Chen C, Xing Y. Bioinformatics analysis of multi-omics data identifying molecular biomarker candidates and epigenetically regulatory targets associated with retinoblastoma. Medicine (Baltimore) 2020; 99:e23314. [PMID: 33217867 PMCID: PMC7676602 DOI: 10.1097/md.0000000000023314] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retinoblastoma (RB) is the commonest malignant tumor of the infant retina. Besides genetic changes, epigenetic events are also considered to implicate the occurrence of RB. This study aimed to identify significantly altered protein-coding genes, DNA methylation, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and their molecular functions and pathways associated with RB, and investigate the epigenetically regulatory mechanism of DNA methylation modification and non-coding RNAs on key genes of RB via bioinformatics method.We obtained multi-omics data on protein-coding genes, DNA methylation, miRNAs, and lncRNAs from the Gene Expression Omnibus database. We identified differentially expressed genes (DEGs) using the Limma package in R, discerned their biological functions and pathways using enrichment analysis, and conducted the modular analysis based on protein-protein interaction network to identify hub genes of RB. Survival analyses based on The Cancer Genome Atlas clinical database were performed to analyze prognostic values of key genes of RB. Subsequently, we identified the differentially methylated genes, differentially expressed miRNAs (DEMs) and lncRNAs (DELs), and intersected them with key genes to analyze possible targets of the underlying epigenetic regulatory mechanisms. Finally, the ceRNA network of lncRNAs-miRNAs-mRNAs was constructed using Cytoscape.A total of 193 DEGs, 74 differentially methylated-DEGs (DM-DEGs), 45 DEMs, 5 DELs were identified. The molecular pathways of DEGs were enriched in cell cycle, p53 signaling pathway, and DNA replication. A total of 10 key genes were identified and found significantly associated with poor survival outcome based on survival analyses, including CDK1, BUB1, CCNB2, TOP2A, CCNB1, RRM2, KIF11, KIF20A, NDC80, and TTK. We further found that hub genes MCM6 and KIF14 were differentially methylated, key gene RRM2 was targeted by DEMs, and key genes TTK, RRM2, and CDK1 were indirectly regulated by DELs. Additionally, the ceRNA network with 222 regulatory associations was constructed to visualize the correlations between lncRNAs-miRNAs-mRNAs.This study presents an integrated bioinformatics analysis of genetic and epigenetic changes that may be associated with the development of RB. Findings may yield many new insights into the molecular biomarker candidates and epigenetically regulatory targets of RB.
Collapse
|
30
|
Seppälä LK, Vettenranta K, Leinonen MK, Tommiska V, Madanat-Harjuoja LM. Preterm birth, neonatal therapies and the risk of childhood cancer. Int J Cancer 2020; 148:2139-2147. [PMID: 33128776 DOI: 10.1002/ijc.33376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022]
Abstract
Our aim was to study the impact of preterm birth and neonatal therapies on the risk of childhood cancer using a nationwide, registry-based, case-control design. Combining population-based data from Finnish Medical Birth Registry (MBR) and Finnish Cancer Registry, we identified a total of 2029 patients diagnosed with cancer under the age of 20 years and 10 103 age- and sex-matched controls over the years 1996 to 2014. Information on the prenatal and perinatal conditions was obtained from the MBR. Gestational age was categorized into early (<32) and late preterm (32-36) and term (≥37 weeks). Cancer risk among the preterm compared to term neonates was evaluated using conditional logistic regression. We identified 141 cancers among the preterm (20.8% of 678) vs 1888 cancers in the term children (16.5% of 11 454). The risk of any cancer was increased for the preterm (odds ratio [OR] 1.28, 95% confidence interval [CI] 1.06-1.57), especially for the early preterm (OR 1.84, 95% CI 1.16-2.92). The risk of acute myeloid leukemia (AML; OR 2.33, 95% CI 1.25-4.37), retinoblastoma (OR 3.21, 95% CI 1.22-8.41) and germ cell tumors (OR 5.89, 95% CI 2.29-15.18) was increased among the preterm compared to term. Germ cell tumors were diagnosed at a significantly younger age among the preterm. Neonatal therapies, for example, mechanical ventilation, were associated with an increased risk of childhood cancer independent of gestational age. Preterm, especially early preterm birth, is associated with an increased risk of childhood cancer, especially germ cell tumors and AML. Respiratory distress requiring neonatal intervention also appears to be associated with an increased risk.
Collapse
Affiliation(s)
- Laura K Seppälä
- University of Helsinki, Children's Hospital, Pediatric Research Center, Helsinki, Finland
| | - Kim Vettenranta
- University of Helsinki, Children's Hospital, University of Helsinki and the Finnish Red Cross Blood Service, Helsinki, Finland
| | - Maarit K Leinonen
- Finnish Institute for Health and Welfare, Information Services Department, Unit of Statistics and Registers, Helsinki, Finland
| | - Viena Tommiska
- Helsinki Children's Hospital, Division of Neonatology, Helsinki, Finland
| | | |
Collapse
|
31
|
Xu L, Shen L, Polski A, Prabakar RK, Shah R, Jubran R, Kim JW, Biegel J, Kuhn P, Cobrinik D, Hicks J, Gai X, Berry JL. Simultaneous identification of clinically relevant RB1 mutations and copy number alterations in aqueous humor of retinoblastoma eyes. Ophthalmic Genet 2020; 41:526-532. [PMID: 32799607 DOI: 10.1080/13816810.2020.1799417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Detection of germline RB1 mutations is critical for risk assessment of retinoblastoma (RB) patients. Assessment of somatic copy number alterations (SCNAs) is also critically important because of their prognostic significance. Herein we present a refined approach for the simultaneous identification of RB1 variants and SCNAs in the aqueous humor (AH) of RB eyes. MATERIALS AND METHODS Subjects included 7 eyes of 6 RB patients that underwent AH extraction, and 4 matched tumor samples. Cell-free DNA (cfDNA) was isolated and sequenced to assess genome-wide SCNAs. The same sequencing libraries then underwent targeted resequencing and mutation detection using a custom hybridization panel that targets RB1 and MYCN. Illumina paired-end 2x150bp sequencing was used to characterize single-nucleotide variants (SNVs) and loss of heterozygosity (LOH). Results were compared to peripheral blood RB1 testing. Tumor fraction (TFx) was calculated using ichorCNA. RESULTS Four of 7 AH samples contained clinically significant SCNAs. Of the 3 other samples, 1 showed focal MYCN amplification and 1 showed focal RB1 deletion. All 4 enucleated tumors contained SCNAs. Mutational analysis of tumor DNA identified all first hits (2 germline RB1 SNVs, 2 germline CNAs) and second hits (4 RB1 SNVs). RB1 variants in AH were concordant with those obtained from corresponding tumor tissue and blood. In AH samples without paired tumor, both RB1 hits were identified with high variant allele frequency, even in the absence of SCNAs. CONCLUSIONS AH liquid biopsy is a minimally invasive, in vivo alternative to tissue analysis for the simultaneous identification of RB1 variants and SCNAs in RB eyes.
Collapse
Affiliation(s)
- Liya Xu
- The Vision Center, Children's Hospital Los Angeles , Los Angeles, California, USA.,Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California , Los Angeles, California, USA
| | - Lishuang Shen
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles , Los Angeles, California, USA
| | - Ashley Polski
- The Vision Center, Children's Hospital Los Angeles , Los Angeles, California, USA.,USC Roski Eye Institute, Keck School of Medicine of USC , Los Angeles, California, USA
| | - Rishvanth K Prabakar
- Department of Molecular and Computational Biology, University of Southern California , Los Angeles, California, USA
| | - Rachana Shah
- Center for Blood Disorders, Children's Hospital Los Angeles , Los Angeles, California, USA
| | - Rima Jubran
- Center for Blood Disorders, Children's Hospital Los Angeles , Los Angeles, California, USA
| | - Jonathan W Kim
- The Vision Center, Children's Hospital Los Angeles , Los Angeles, California, USA.,USC Roski Eye Institute, Keck School of Medicine of USC , Los Angeles, California, USA
| | - Jacklyn Biegel
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles , Los Angeles, California, USA
| | - Peter Kuhn
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California , Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine of USC , Los Angeles, California, USA.,Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California , Los Angeles, California, USA.,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California , Los Angeles, California, USA
| | - David Cobrinik
- The Vision Center, Children's Hospital Los Angeles , Los Angeles, California, USA.,USC Roski Eye Institute, Keck School of Medicine of USC , Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine of USC , Los Angeles, California, USA.,The Saban Research Institute, Children's Hospital Los Angeles , Los Angeles, California, USA
| | - James Hicks
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California , Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine of USC , Los Angeles, California, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine of USC , Los Angeles, California, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles , Los Angeles, California, USA
| | - Jesse L Berry
- The Vision Center, Children's Hospital Los Angeles , Los Angeles, California, USA.,USC Roski Eye Institute, Keck School of Medicine of USC , Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine of USC , Los Angeles, California, USA.,The Saban Research Institute, Children's Hospital Los Angeles , Los Angeles, California, USA
| |
Collapse
|
32
|
[Cancer in the first 18 months of life]. An Pediatr (Barc) 2020; 93:358-366. [PMID: 32303474 DOI: 10.1016/j.anpedi.2020.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Oncological-haematological disease continues to be the first cause of non-traumatic mortality in childhood, as well as a significant cause of morbidity. The patient less than 18-months-old has special clinical, diagnostic, and therapeutic features that all paediatricians are interested in determining, with the aim of achieving greater survival and a lower morbidity throughout the lives of their patients. MATERIAL AND METHODS A retrospective, descriptive study was carried out using the clinical, diagnostic, and therapeutic variables in patients less than 18-months-old diagnosed with an oncological-haematological that received chemotherapy in a Paediatric Oncology Unit between January 2007 and August 2019. RESULTS A total of 72 patients were diagnosed with 76 cancers that required chemotherapy. The most common cancer was leukaemia (21 patients), followed by neuroblastoma (15 patients), and tumours of the central nervous system (12 patients). The presentation of "life-threatening symptoms" was seen in 20.8% of cases, particularly in tumours of neural origin (13/15). Although 18% of patients showed no symptoms on diagnosis, just over half (51%) of the diagnoses took place in the "advanced stages". Particularly in the case of solid tumours in which 23.6% were diagnosed with metastases. A significant percentage of genetic alterations implicated in the aetiopathogenesis of the different cancers were found. CONCLUSIONS Cancer in the first stages of life is a diagnostic and therapeutic challenge due to its phenotypical diversity, its genetic load, and its therapeutic difficulties. Knowledge of its particular features is essential for its early and effective approach.
Collapse
|