1
|
Zhang L, Cui Y, Mei J, Zhang Z, Zhang P. Exploring cellular diversity in lung adenocarcinoma epithelium: Advancing prognostic methods and immunotherapeutic strategies. Cell Prolif 2024; 57:e13703. [PMID: 38946232 PMCID: PMC11533061 DOI: 10.1111/cpr.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024] Open
Abstract
Immunotherapy has brought significant advancements in the treatment of lung adenocarcinoma (LUAD), but identifying suitable candidates remains challenging. In this study, we investigated tumour cell heterogeneity using extensive single-cell data and explored the impact of different tumour cell cluster abundances on immunotherapy in the POPLAR and OAK immunotherapy cohorts. Notably, we found a significant correlation between CKS1B+ tumour cell abundance and treatment response, as well as stemness potential. Leveraging marker genes from the CKS1B+ tumour cell cluster, we employed machine learning algorithms to establish a prognostic and immunotherapeutic signature (PIS) for LUAD. In multiple cohorts, PIS outperformed 144 previously published signatures in predicting LUAD prognosis. Importantly, PIS reliably predicted genomic alterations, chemotherapy sensitivity and immunotherapy responses. Immunohistochemistry validated lower expression of immune markers in the low-PIS group, while in vitro experiments underscored the role of the key gene PSMB7 in LUAD progression. In conclusion, PIS represents a novel biomarker facilitating the selection of suitable LUAD patients for immunotherapy, ultimately improving prognosis and guiding clinical decisions.
Collapse
Affiliation(s)
- Lianmin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yanan Cui
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jie Mei
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingChina
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| |
Collapse
|
2
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Xu X, Xu X, Cao J, Ruan L. MicroRNA-1258 suppresses oxidative stress and inflammation in septic acute lung injury through the Pknox1-regulated TGF-β1/SMAD3 cascade. Clinics (Sao Paulo) 2024; 79:100354. [PMID: 38640751 PMCID: PMC11031721 DOI: 10.1016/j.clinsp.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 03/18/2024] [Indexed: 04/21/2024] Open
Abstract
AIM The study was to clarify the mechanism of miR-1258 targeting Prep1 (pKnox1) to control Transforming Growth Factor β1 (TGF-β1)/SMAD3 pathway in septic Acute Lung Injury (ALI)-induced oxidative stress and inflammation. METHODS BEAS-2B cells and C57BL/6 mice were used to make in vitro and in vivo septic ALI models, respectively. miR-1258 expression was checked by RT-qPCR. After transfection in the in vitro experimental model, inflammation, oxidative stress, viability, and apoptosis were observed through ELISA, MTT, and flow cytometry. RESULTS In the in vivo model after miR-1258 overexpression treatment, inflammation, oxidative stress, and lung injury were further investigated. The targeting relationship between miR-1258 and Pknox1 was tested. Low miR-1258 was expressed in septic ALI patients, LPS-treated BEAS-2B cells, and mice. Upregulated miR-1258 prevented inflammation, oxidative stress, and apoptosis but enhanced the viability of LPS-treated BEAS-2B cells. The impact of upregulated miR-1258 on LPS-treated BEAS-2B cells was mitigated by inhibiting Pknox1 expression. MiR-1258 overexpression had the alleviating effects on inflammation, oxidative stress, and lung injury of LPS-injured mice through suppressing Pknox1 expression and TGF-β1/SMAD3 cascade activation. CONCLUSIONS The study concludes that miR-1258 suppresses oxidative stress and inflammation in septic ALI through the Pknox1-regulated TGF-β1/SMAD3 cascade.
Collapse
Affiliation(s)
- XiaoMeng Xu
- Guangzhou Hospital of Integrated Traditional and West Medicine, Department of Anesthesiology, Guangzhou City, Guangdong Province, China
| | - XiaoHong Xu
- Guangzhou Hospital of Integrated Traditional and West Medicine, Department of Pediatrics, Guangzhou City, Guangdong Province, China
| | - JinLiang Cao
- Guangzhou Hospital of Integrated Traditional and West Medicine, Department of Anesthesiology, Guangzhou City, Guangdong Province, China
| | - LuoYang Ruan
- Guangzhou Hospital of Integrated Traditional and West Medicine, Department of Anesthesiology, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
4
|
Tang Y, Lan X, Yan M, Fu Z, Li H. CKS1B as a potential target for prognostic assessment and intervention in pancreatic cancer and its role in abnormal proliferation and cellular phenotype through mediation of cell cycle signaling pathways. Saudi Med J 2024; 45:128-138. [PMID: 38309745 PMCID: PMC11115417 DOI: 10.15537/smj.2024.45.2.20230132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/04/2024] [Indexed: 02/05/2024] Open
Abstract
OBJECTIVES To investigate the role of cell cycle protein-dependent kinase regulatory subunit 1B (CKS1B) in driving the aggressive and rapid proliferation observed in pancreatic cancer. METHODS A comprehensive analysis was carried out using raw mRNA information and data from 2 databases: the cancer genome atlas and gene expression omnibus. The differential expression of CKS1B at the mRNA and tissue levels in cancer and adjacent paracancerous tissues were assessed. Additionally, the relationship of CKS1B expression and overall survival (OS) rate was investigated using Kaplan-Meier survival curves. Potential molecular mechanisms by which CKS1B may influence the biological characteristics of pancreatic cancer were explored using resources available within the encyclopedia of RNA interactomes database. RESULTS The CKS1B exhibited significant differential expression at the mRNA as well as protein levels. A correlation with statistical significance between CKS1B expression and N stage, age, and alcohol consumption was observed. Notably, high CKS1B expression was determined as a predictive factor for worse OS. Furthermore, the analysis revealed a potential synergistic role between CKS1B and the molecule PKMYT1, which could impact the ATR-Chk1-Cdc25 signaling pathway and disrupt the G2/M checkpoint within the cell cycle, ultimately promoting abnormal tumor proliferation. CONCLUSION The CKS1B may serve as a novel potential prognostic factor in pancreatic cancer and is involved in the abnormal proliferation biology phenotype by mediating cell cycle signaling pathways.
Collapse
Affiliation(s)
- Yuzhu Tang
- From the Department of specialty (Yuzhu, Xiaohua), Graduate School of Hebei North University, Zhangjiakou, and from the Department of Radiation Oncology (Yuzhu, Maohui, Zhiguang, Hongqi), Air Force Medical Center, PLA, Beijing, China.
| | - Xiaohua Lan
- From the Department of specialty (Yuzhu, Xiaohua), Graduate School of Hebei North University, Zhangjiakou, and from the Department of Radiation Oncology (Yuzhu, Maohui, Zhiguang, Hongqi), Air Force Medical Center, PLA, Beijing, China.
| | - Maohui Yan
- From the Department of specialty (Yuzhu, Xiaohua), Graduate School of Hebei North University, Zhangjiakou, and from the Department of Radiation Oncology (Yuzhu, Maohui, Zhiguang, Hongqi), Air Force Medical Center, PLA, Beijing, China.
| | - Zhiguang Fu
- From the Department of specialty (Yuzhu, Xiaohua), Graduate School of Hebei North University, Zhangjiakou, and from the Department of Radiation Oncology (Yuzhu, Maohui, Zhiguang, Hongqi), Air Force Medical Center, PLA, Beijing, China.
| | - Hongqi Li
- From the Department of specialty (Yuzhu, Xiaohua), Graduate School of Hebei North University, Zhangjiakou, and from the Department of Radiation Oncology (Yuzhu, Maohui, Zhiguang, Hongqi), Air Force Medical Center, PLA, Beijing, China.
| |
Collapse
|
5
|
Lin X, Ma Q, Chen L, Guo W, Huang Z, Huang T, Cai YD. Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods. Biochim Biophys Acta Gen Subj 2023; 1867:130484. [PMID: 37805078 DOI: 10.1016/j.bbagen.2023.130484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Targeted therapy has revolutionized cancer treatment, greatly improving patient outcomes and quality of life. Lung cancer, specifically non-small cell lung cancer, is frequently driven by the G12C mutation at the KRAS locus. The development of KRAS inhibitors has been a breakthrough in the field of cancer research, given the crucial role of KRAS mutations in driving tumor growth and progression. However, over half of patients with cancer bypass inhibition show limited response to treatment. The mechanisms underlying tumor cell resistance to this treatment remain poorly understood. METHODS To address above gap in knowledge, we conducted a study aimed to elucidate the differences between tumor cells that respond positively to KRAS (G12C) inhibitor therapy and those that do not. Specifically, we analyzed single-cell gene expression profiles from KRAS G12C-mutant tumor cell models (H358, H2122, and SW1573) treated with KRAS G12C (ARS-1620) inhibitor, which contained 4297 cells that continued to proliferate under treatment and 3315 cells that became quiescent. Each cell was represented by the expression levels on 8687 genes. We then designed an innovative machine learning based framework, incorporating seven feature ranking algorithms and four classification algorithms to identify essential genes and establish quantitative rules. RESULTS Our analysis identified some top-ranked genes, including H2AFZ, CKS1B, TUBA1B, RRM2, and BIRC5, that are known to be associated with the progression of multiple cancers. CONCLUSION Above genes were relevant to tumor cell resistance to targeted therapy. This study provides important insights into the molecular mechanisms underlying tumor cell resistance to KRAS inhibitor treatment.
Collapse
Affiliation(s)
- Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou 350014, China.
| | - QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Zhiyi Huang
- College of Chemistry, Fuzhou University, Fuzhou 350000, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Dai P, Xiong L, Wei Y, Wei X, Zhou X, Zhao J, Tang H. A pancancer analysis of the oncogenic role of cyclin B1 (CCNB1) in human tumors. Sci Rep 2023; 13:16226. [PMID: 37758792 PMCID: PMC10533567 DOI: 10.1038/s41598-023-42801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Aberrant levels of the G2/M cyclin cyclin B1 (gene CCNB1) have been associated with multiple cancers; however, the literature lacks a focused and comprehensive analysis of the regulation of this important regulator of cell proliferation in cancer. Through this work, we performed a pancancer analysis of the levels of CCNB1 and dissected aspects of regulation and how this correlates with cancer prognosis. We comprehensively evaluated the expression and promoter methylation of CCNB1 across 38 cancers based on RNA sequencing data obtained from the Cancer Genome Atlas (TCGA). The correlation of CCNB1 with prognosis and the tumor microenvironment was explored. Using lung adenocarcinoma data, we studied the potential upstream noncoding RNAs involved in the regulation of CCNB1 and validated the protein levels and prognostic value of CCNB1 for this disease site. CCNB1 was highly expressed, and promoter methylation was reduced in most cancers. Gene expression of CCNB1 correlated positively with poor prognosis of tumor patients, and these results were confirmed at the protein level using lung adenocarcinoma. CCNB1 expression was associated with the infiltration of T helper cells, and this further correlated with poor prognosis for certain cancers, including renal clear cell carcinoma and lung adenocarcinoma. Subsequently, we identified a specific upstream noncoding RNA contributing to CCNB1 overexpression in lung adenocarcinoma through correlation analysis, expression analysis and survival analysis. This study provides a comprehensive analysis of the expression and methylation status of CCNB1 across several forms of cancer and provides further insight into the mechanistic pathways regulating Cyclin B1 in the tumorigenesis process.
Collapse
Affiliation(s)
- Peng Dai
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lecai Xiong
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yanhong Wei
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaoyan Wei
- Liyuan Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Xuefeng Zhou
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinping Zhao
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Hexiao Tang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
7
|
Xu Y, Zai Z, Lu Z, Zhang T, Wang L, Qian X, Tao J, Peng X, Zhang Y, Chen F. Circular RNA CircCDKN2B−AS_006 Promotes the Tumor-like Growth and Metastasis of Rheumatoid Arthritis Synovial Fibroblasts by Targeting the miR−1258/RUNX1 Axis. Int J Mol Sci 2023; 24:ijms24065880. [PMID: 36982956 PMCID: PMC10051600 DOI: 10.3390/ijms24065880] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune polyarthritis in which synovial fibroblasts (SFs) play a major role in cartilage and bone destruction through tumor−like proliferation, migration, and invasion. Circular RNAs (circRNAs) have emerged as vital regulators for tumor progression. However, the regulatory role, clinical significance, and underlying mechanisms of circRNAs in RASF tumor−like growth and metastasis remain largely unknown. Differentially expressed circRNAs in synovium samples from patients with RA and patients with joint trauma were identified via RNA sequencing. Subsequently, in vitro and in vivo experiments were performed to investigate the functional roles of circCDKN2B−AS_006 in RASF proliferation, migration, and invasion. CircCDKN2B−AS_006 was upregulated in synovium samples from patients with RA and promoted the tumor-like proliferation, migration, and invasion of RASFs. Mechanistically, circCDKN2B−AS_006 was shown to regulate the expression of runt−related transcription factor 1 (RUNX1) by sponging miR-1258, influencing the Wnt/β−catenin signaling pathway, and promoting the epithelial−to−mesenchymal transition (EMT) in RASFs. Moreover, in the collagen−induced arthritis (CIA) mouse model, intra−articular injection of lentivirus−shcircCDKN2B−AS_006 was capable of alleviating the severity of arthritis and inhibiting the aggressive behaviors of SFs. Furthermore, the correlation analysis results revealed that the circCDKN2B−AS_006/miR−1258/RUNX1 axis in the synovium was correlated with the clinical indicators of RA patients. CircCDKN2B−AS_006 promoted the proliferation, migration, and invasion of RASFs by modulating the miR−1258/RUNX1 axis.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Zhuoyan Zai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Zheng Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Tao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Longfei Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Xuewen Qian
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jingjing Tao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Xiaoqing Peng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Yihao Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Feihu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
- Correspondence:
| |
Collapse
|
8
|
Hsa_circ_0000520 Promotes Non-Small Cell Lung Cancer Progression through the miR-1258/AKT3 Axis. JOURNAL OF ONCOLOGY 2022; 2022:3676685. [PMID: 36593867 PMCID: PMC9805391 DOI: 10.1155/2022/3676685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/09/2022] [Accepted: 11/05/2022] [Indexed: 12/25/2022]
Abstract
Background There are several previous studies suggesting that circular RNAs (circRNAs) are involved in tumorigenesis of non-small cell lung cancer (NSCLC). Nevertheless, the role of circRNA_0000520 (circ_0000520) in this disease has not yet been studied. Methods circ_0000520, microRNA (miR)-1258, and AKT serine/threonine kinase 3 (AKT3) mRNA expression levels were detected by qPCR. CCK-8, EdU, and Transwell assays were utilized to detect NSCLC cells' malignant biological behaviors. The targeted relationship between miR-1258 and AKT3 3'-UTR or circ_0000520 was verified through the dual-luciferase reporter gene assay. Western blotting was utilized to measure the AKT3 expression after circ_0000520 and miR-1258 were selectively regulated. Results circ_0000520 was upregulated in NSCLC. Highly expressed circ_0000520 is linked to the NSCLC patient's advanced TNM stage and lymph node metastasis. circ_0000520 overexpression facilitated NSCLC cell growth, migration, and invasion. miR-1258 was identified as the downstream target of circ_0000520. miR-1258 overexpression weakened the effect of circ_0000520 overexpression on NSCLC cells. miR-1258 targeted and inhibited AKT3. circ_0000520 positively regulated the AKT3 expression in NSCLC cells by sponging miR-1258. Conclusion circ_0000520 upregulates AKT3 by competitively binding with miR-1258 to facilitate NSCLC progression.
Collapse
|
9
|
Li L, Wang J, Zhang Z, Yang Q, Deng Z, Zou W, Ge X, Pan K, Li C, Liu R. Identification of CKS1B as a prognostic indicator and a predictive marker for immunotherapy in pancreatic cancer. Front Immunol 2022; 13:1052768. [PMID: 36405738 PMCID: PMC9668883 DOI: 10.3389/fimmu.2022.1052768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/19/2022] [Indexed: 01/10/2024] Open
Abstract
As a regulatory subunit of cyclin kinase, CKS1B promotes cancer development and is associated with poor prognosis in multiple cancer patients. However, the intrinsic role of CKS1B in pancreatic cancer remains elusive. In our research, CKS1B expression in pancreatic tumor tissue was higher than that in normal tissue by TCGA, Oncomine and CPTAC databases analysis. Similar result was verified in our center tissues by qRT-PCR. CKS1B expression was closely relevant to histologic grading, prognosis, and TMB. GSEA showed that CKS1B mainly participated in the regulation of autophagy and T cell receptor signaling pathway. Furthermore, CIBERSORT analysis showed that there was a strong correlation between CKS1B expression and tumor immune cells infiltration. Drug sensitivity analysis showed that patients with high CKS1B expression appeared to be more sensitive to gemcitabine, 5-fluorouracil, and paclitaxel. We then investigated cell viability and migratory ability by CCK8 and transwell assay, respectively. Results indicated that CKS1B knockdown by short hairpin RNA significantly reduced pancreatic cancer cell viability and invasion via regulating PD-L1 expression. In conclusion, our research further demonstrates the role of CKS1B in pancreatic cancer and the signaling pathways involved. The association of CKS1B with immune infiltration and immune checkpoint may provide a new direction for immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Lincheng Li
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Zhuochao Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiyue Yang
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Zhaoda Deng
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenbo Zou
- Department of General Surgery, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Xinlan Ge
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Ke Pan
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Chonghui Li
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Rong Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Nagaraju GP, Dariya B, Kasa P, Peela S, El-Rayes BF. Epigenetics in hepatocellular carcinoma. Semin Cancer Biol 2022; 86:622-632. [PMID: 34324953 DOI: 10.1016/j.semcancer.2021.07.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 07/25/2021] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and has a high fatality rate. Genetic and epigenetic aberrations are commonly observed in HCC. The epigenetic processes include chromatin remodelling, histone alterations, DNA methylation, and noncoding RNA (ncRNA) expression and are connected with the progression and metastasis of HCC. Due to their potential reversibility, these epigenetic alterations are widely targeted for the development of biomarkers. In-depth understanding of the epigenetics of HCC is critical for developing rational clinical strategies that can provide a meaningful improvement in overall survival and prediction of therapeutic outcomes. In this article, we have summarised the epigenetic modifications involved in HCC progression and highlighted the potential biomarkers for diagnosis and drug development.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali, 304022, Rajasthan, India
| | - Prameswari Kasa
- Dr. L.V. Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad 500004, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam, 532410 AP, India
| | - Bassel F El-Rayes
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
Wang R, Liu H, Dong M, Huang D, Yi J. Exosomal hsa_circ_0000519 modulates the NSCLC cell growth and metastasis via miR-1258/RHOV axis. Open Med (Wars) 2022; 17:826-840. [PMID: 35582196 PMCID: PMC9055259 DOI: 10.1515/med-2022-0428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 12/25/2022] Open
Abstract
This study aims to explore the function and mechanism of exosomal circ_0000519 in non-small cell lung cancer (NSCLC) development. Expression of circ_0000519, microRNA (miR)-1258, and Ras homolog gene family V (RHOV) in serum samples of NSCLC patients or cell lines were examined via quantitative reverse transcription-polymerase chain reaction and Western blotting. The function of circ_0000519 was evaluated through 5-ethynyl-2′-deoxyuridine (EdU) staining, colony formation, transwell, Western blotting, xenograft, and immunohistochemistry analyses. The binding relationship was evaluated by a dual-luciferase reporter assay and RNA pull-down assay. Results showed that circ_0000519 abundance was enhanced in the serum samples of NSCLC patients and cells. circ_0000519 knockdown suppressed the cell growth by decreasing the colony-formation ability and Cyclin D1 expression and inhibited cell metastasis via reducing migration, invasion, and levels of Vimentin and matrix metalloproteinase 9 (MMP9). circ_0000519 overexpression promoted cell growth and metastasis. circ_0000519 was carried by exosomes and knockdown of exosomal circ_0000519 suppressed the cell growth and metastasis. miR-1258 was downregulated in NSCLC cells and targeted by circ_0000519. RHOV was targeted by miR-1258 and upregulated in the NSCLC cells. miR-1258 knockdown or RHOV overexpression attenuated the influence of exosomal circ_0000519 knockdown on cell growth and metastasis. Exosomal circ_0000519 knockdown decreased xenograft tumor growth. Collectively, the knockdown of exosomal circ_0000519 repressed the cell growth and metastasis in NSCLC through the miR-1258/RHOV axis, which provided a new insight into NSCLC development and treatment.
Collapse
Affiliation(s)
- Rui Wang
- Department of Oncology, Jingmen No. 1 People's Hospital, Jingmen, Hubei, China
| | - Hongliu Liu
- Department of Oncology, Jingmen No. 1 People's Hospital, Jingmen, Hubei, China
| | - Mingqiang Dong
- Department of Oncology, Jingmen No. 1 People's Hospital, Jingmen, Hubei, China
| | - Dan Huang
- Department of Health Care for Cadres, Jingmen No. 1 People's Hospital, Jingmen, Hubei, China
| | - Jun Yi
- Department of Cardiothoracic Surgery, Jingmen No. 1 People's Hospital, Jingmen, Hubei, China
| |
Collapse
|
12
|
Khashkhashi Moghadam S, Bakhshinejad B, Khalafizadeh A, Mahmud Hussen B, Babashah S. Non-coding RNA-associated competitive endogenous RNA regulatory networks: Novel diagnostic and therapeutic opportunities for hepatocellular carcinoma. J Cell Mol Med 2021; 26:287-305. [PMID: 34907642 PMCID: PMC8743668 DOI: 10.1111/jcmm.17126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), as the most prevalent liver malignancy, is annually diagnosed in more than half a million people worldwide. HCC is strongly associated with hepatitis B and C viral infections as well as alcohol abuse. Obesity and nonalcoholic fatty liver disease (NAFLD) also significantly enhance the risk of liver cancer. Despite recent improvements in therapeutic approaches, patients diagnosed in advanced stages show poor prognosis. Accumulating evidence provides support for the regulatory role of non-coding RNAs (ncRNAs) in cancer. There are a variety of reports indicating the regulatory role of microRNAs (miRNAs) in different stages of HCC. Long non-coding RNAs (LncRNAs) exert their effects by sponging miRNAs and controlling the expression of miRNA-targeted genes. Circular RNAs (circRNAs) perform their biological functions by acting as transcriptional regulators, miRNA sponges and protein templates. Diverse studies have illustrated that dysregulation of competing endogenous RNA networks (ceRNETs) is remarkably correlated with HCC-causing diseases such as chronic viral infections, nonalcoholic steatohepatitis and liver fibrosis/cirrhosis. The aim of the current article was to provide an overview of the role and molecular mechanisms underlying the function of ceRNETs that modulate the characteristics of HCC such as uncontrolled cell proliferation, resistance to cell death, metabolic reprogramming, immune escape, angiogenesis and metastasis. The current knowledge highlights the potential of these regulatory RNA molecules as novel diagnostic biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sadegh Babashah
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.,Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Mo C, Xie L, Chen C, Ma J, Huang Y, Wu Y, Xu Y, Peng H, Chen Z, Mao R. The Clinical Significance and Potential Molecular Mechanism of Upregulated CDC28 Protein Kinase Regulatory Subunit 1B in Osteosarcoma. JOURNAL OF ONCOLOGY 2021; 2021:7228584. [PMID: 34925510 PMCID: PMC8683182 DOI: 10.1155/2021/7228584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND CDC28 Protein Kinase Regulatory Subunit 1B (CKS1B) is a member of cyclin-dependent kinase subfamily and the relationship between CKS1B and osteosarcoma (OS) remains to be explored. METHODS 80 OS and 41 nontumor tissue samples were arranged to conduct immunohistochemistry (IHC) to evaluate CKS1B expression between OS and nontumor samples. The standard mean deviation (SMD) was calculated based on in-house IHC and tissue microarrays and exterior high-throughput datasets for further verification of CKS1B expression in OS. The effect of CKS1B expression on clinicopathological and overall survival of OS patients was measured through public high-throughput datasets, and analysis of immune infiltration and single-cell RNA-seq was applied to ascertain molecular mechanism of CKS1B in OS. RESULTS A total of 197 OS samples and 83 nontumor samples (including tissue and cell line) were obtained from in-house IHC, microarrays, and exterior high-throughput datasets. The analysis of integrated expression status demonstrated upregulation of CKS1B in OS (SMD = 1.38, 95% CI [0.52-2.25]) and the significant power of CKS1B expression in distinguishing OS samples from nontumor samples (Area under the Curve (AUC) = 0.89, 95% CI [0.86-0.91]). Clinicopathological and prognosis analysis indicated no remarkable significance but inference of immune infiltration and single-cell RNA-seq prompted that OS patients with overexpressed CKS1B were more likely to suffer OS metastasis while MYC Protooncogene may be the upstream regulon of CKS1B in proliferating osteoblastic OS cells. CONCLUSIONS In this study, sufficient evidence was provided for upregulation of CKS1B in OS. The advanced effect of CKS1B on OS progression indicates a foreground of CKS1B as a biomarker for OS.
Collapse
Affiliation(s)
- Chaohua Mo
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Le Xie
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Chang Chen
- Department of Pathology, Wuzhou Res Cross Hospital, Wuzhou, Guangxi Zhuang Autonomous Region 543100, China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yingxin Huang
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Yanxing Wu
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Yuanyuan Xu
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Huizhi Peng
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Zengwei Chen
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Rongjun Mao
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| |
Collapse
|
14
|
Jia Y, Tian Q, Yang K, Liu Y, Liu Y. A Pan-Cancer Analysis of Clinical Prognosis and Immune Infiltration of CKS1B in Human Tumors. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5862941. [PMID: 34845438 PMCID: PMC8627364 DOI: 10.1155/2021/5862941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022]
Abstract
Although more and more evidence supports CDC28 protein kinase subunit 1B (CKS1B) is involved significantly in the development of human cancers, most of the researches have focused on a single disease, and pan-cancer studies conducted from a holistic perspective of different tumor sources have not been reported yet. Here, for the first time, we investigated the potential oncogenic and prognostic role of CKS1B across 33 tumors based on public databases and further verified it in a small scale by RNA sequencing or quantitative real-time PCR. CKS1B was generally highly expressed in a majority of tumors and had a notable correlation with the prognosis of patients, but its prognostic significance in different tumors was not exactly the same. In addition, CKS1B expression was also closely related to the infiltration of cancer-associated fibroblasts in tumors such as breast invasive carcinoma, kidney chromophobe, lung adenocarcinoma, and tumor-infiltrating lymphocytes in tumors such as glioblastoma multiforme, bladder urothelial carcinoma, and brain lower grade glioma. Moreover, reduced CKS1B methylation was observed in certain tumors, for example, adrenocortical carcinoma. Cell cycle and kinase activity regulation and PI3K-Akt signaling pathway were found to be involved in the functional mechanism of CKS1B. In conclusion, our first pan-cancer analysis of CKS1B contributes to a better overall understanding of CKS1B and may provide a new target for future cancer therapy.
Collapse
Affiliation(s)
- Yan Jia
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Tian
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaitai Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanfeng Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Li P, Wang H, Tang Y, Sun S, Ma Y, Xu Y, Chen G. Knockdown of LINC00657 inhibits the viability, migration and invasion of pancreatic cancer cells by regulating the miR-520h/CKS1B axis. Exp Ther Med 2021; 22:1142. [PMID: 34504588 DOI: 10.3892/etm.2021.10576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNA LINC00657 has a critical role in multiple cancers. The aim of the present study was to investigate the regulatory effect of LINC00657 in pancreatic cancer (PC) and reveal its molecular mechanism of function. The expression levels of LINC00657 and microRNA (miR)-520h were detected by reverse transcription-quantitative PCR in PC tissues and cell lines. MTT, wound healing and Transwell assays were used to detect cell viability, migration and invasion, respectively. Dual-luciferase reporter assay was utilized to examine the relationship between LINC00657 and miR-520h and that between miR-520h and cyclin-dependent kinases regulatory subunit 1 (CKS1B). Western blotting was performed to detect CKS1B expression. The expression levels of LINC00657 and CKS1B were enhanced and miR-520h expression level was reduced in PC tissues and cell lines compared with adjacent normal tissues or HPDE6 cells. LINC00657 knockdown decreased the viability, migration and invasion of PC cells. Additionally, LINC00657 targeted miR-520h and negatively modulated miR-520h expression. Furthermore, miR-520h overexpression inhibited the viability, migration and invasion of PC cells. In addition, miR-520h targeted CKS1B and reversely regulated CKS1B expression. miR-520h inhibition and CKS1B overexpression alleviated the inhibition effect of LINC00657 knockdown on the viability, migration and invasion of PACA-2 PC cells. In conclusion, the results of the present study demonstrated that LINC00657 knockdown repressed the viability, migration and invasion of PC cells via targeting the miR-520h/CKS1B axis, which may offer a future target for PC therapy.
Collapse
Affiliation(s)
- Peng Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Hongsheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Ying Tang
- Department of Nursing, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Shuo Sun
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Yue Ma
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Yansong Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Guangyu Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| |
Collapse
|
16
|
Liu X, Zhao D. CKS1B promotes the progression of hepatocellular carcinoma by activating JAK/STAT3 signal pathway. Anim Cells Syst (Seoul) 2021; 25:227-234. [PMID: 34408811 PMCID: PMC8366641 DOI: 10.1080/19768354.2021.1953142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy of considerable concern due to its continuous increase in morbidity and mortality. This study attempts to identify the molecules that play a key role in the progression of HCC, explore its potential mechanism, and provide more target choices for targeted therapy. Using overexpression plasmid and shRNA, CKS1B was respectively overexpressed and knocked down to explore its biological function roles in HCC progression and development. MTT and colony formation assays showed that knockdown of CKS1B inhibited the survival and proliferation of HCC cell lines (Hep3B and Huh7). The flow cytometry and western blot analysis showed that knockdown of CKS1B significantly induced the apoptosis of Hep3B and Huh7 cells. The wound healing and transwell invasion assays showed that knockdown of CKS1B had a significant inhibitory effect on the migration and invasion of Hep3B and Huh7 cells. These functional tests confirmed that CKS1B acts as an oncogene that regulates the malignant progression of HCC. Moreover, this study also demonstrated that knockdown of CKS1B inhibited the activation of JAK/STAT3 pathway, evidenced by the significantly downregulated p-STAT3 protein expression. Furthermore, knockdown of CKS1B also downregulated STAT3 target genes TIMP-1, Bcl-2 and VEGF, which were involved in controlling cell apoptosis and migration. On the contrary, overexpression of CKS1B caused the completely opposite results. Taken together, CKS1B acts as an oncogene to promote the proliferation and metastasis of HCC cells by activating JAK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xitao Liu
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Inner Mongolia Medical University, Mongolia Autonomous Region, Hohhot, People's Republic of China
| | - Defang Zhao
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Inner Mongolia Medical University, Mongolia Autonomous Region, Hohhot, People's Republic of China
| |
Collapse
|
17
|
Zhang N, Hu X, Du Y, Du J. The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed Pharmacother 2021; 134:111099. [DOI: 10.1016/j.biopha.2020.111099] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
|
18
|
Zhang W, Wu G, Sun P, Zhu Y, Zhang H. circ_SMAD2 regulate colorectal cancer cells proliferation through targeting miR-1258/RPN2 signaling pathway. J Cancer 2021; 12:1678-1686. [PMID: 33613755 PMCID: PMC7890329 DOI: 10.7150/jca.50888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) are associated with various diseases, including cancers. However, their roles in colorectal cancer (CRC) have not been established. Hsa_circ_0000847 (circ_SMAD2) is a novel circRNA that was found to be elevated in CRC cell lines and tissues. High circ_SMAD2 levels were positively correlated with CRC clinicopathological features. Functional assays revealed that circ_SMAD2 enhanced CRC cell invasion, proliferation, and tumor growth. Mechanistically, circ_SMAD2 elevated Ribophorin II (RPN2) levels by inhibiting miR-1258. Therefore, circ_SMAD2 is a potential indicator for CRC progression.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Peichun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Yuanzeng Zhu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Han Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| |
Collapse
|
19
|
Wang X, Tao G, Huang D, Liang S, Zheng D. Circular RNA NOX4 promotes the development of colorectal cancer via the microRNA‑485‑5p/CKS1B axis. Oncol Rep 2020; 44:2009-2020. [PMID: 32901890 PMCID: PMC7551031 DOI: 10.3892/or.2020.7758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy globally. The aim of the present study was to explore the role and the working mechanism of circular RNA NADPH oxidase 4 (circNOX4; circBase ID, hsa_circ_0023990) in CRC. Reverse transcription‑quantitative (RT‑q)PCR was used to examine the expression of circNOX4, NOX4 mRNA and microRNA (miR)‑485‑5p in CRC tissues and cell lines. 3‑(4,5‑Dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide and Transwell assays were performed to analyze CRC cell viability and motility. The glycolytic ability of CRC cells was assessed by measuring glucose consumption, lactate production, extracellular acidification and O2 consumption rates using commercial kits. The starBase database was used to predict the targets of circNOX4 and miR‑485‑5p, and the interaction was confirmed by dual‑luciferase reporter and RNA immunoprecipitation assays. A murine xenograft model was established to verify the role of circNOX4 in CRC in vivo. The results demonstrated that the expression of circNOX4 was upregulated in CRC tissues and cell lines compared with that in adjacent normal tissues and a normal colon epithelial cell line, respectively. The expression of circNOX4 was negatively associated with the prognosis of patients with CRC. CircNOX4 silencing suppressed the proliferation, migration, invasion and glycolysis of CRC cells. miR‑485‑5p was identified as a target of circNOX4. CircNOX4 promoted CRC progression by sponging miR‑485‑5p. miR‑485‑5p was demonstrated to bind to the 3' untranslated region (UTR) of CDC28 protein kinase regulatory subunit 1B (CKS1B). miR‑485‑5p overexpression‑mediated malignant properties of CRC cells were partly reversed by the transfection with the CKS1B overexpression plasmid. CircNOX4 silencing restrained the CRC xenograft growth in vivo. Collectively, the results of the present study demonstrated that circNOX4 may serve an oncogenic role in CRC by promoting the proliferation, migration, invasion and glycolysis of CRC cells via the miR‑485‑5p/CKS1B axis.
Collapse
Affiliation(s)
- Ximin Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Geng Tao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Donghong Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Shuangyin Liang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Dongxu Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
20
|
Shi W, Huang Q, Xie J, Wang H, Yu X, Zhou Y. CKS1B as Drug Resistance-Inducing Gene-A Potential Target to Improve Cancer Therapy. Front Oncol 2020; 10:582451. [PMID: 33102238 PMCID: PMC7545642 DOI: 10.3389/fonc.2020.582451] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is a threat to human health and life. Although previously centered on chemical drug treatments, cancer treatment has entered an era of precision targeted therapy. Targeted therapy entails precise guidance, allowing the selective killing of cancer cells and thereby reducing damage to healthy tissues. Therefore, the need to explore potential targets for tumor treatment is vital. Cyclin-dependent kinase regulatory subunit 1B (CKS1B), a member of the conserved cyclin kinase subunit 1 (CKS1) protein family, plays an essential role in cell cycling. A large number of studies have shown that CKS1B is associated with the pathogenesis of many human cancers and closely related to drug resistance. Here, we describe the current understanding of the cellular functions of CKS1B and its underlying mechanisms, summarize a recent study of CKS1B as a target for cancer treatment and discuss the potential of CKS1B as a therapeutic target.
Collapse
Affiliation(s)
- Wenwen Shi
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiudi Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiacui Xie
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Han TS, Hur K, Cho HS, Ban HS. Epigenetic Associations between lncRNA/circRNA and miRNA in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12092622. [PMID: 32937886 PMCID: PMC7565033 DOI: 10.3390/cancers12092622] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Non-coding RNAs such as microRNAs, long non-coding RNAs, and circular RNAs contribute to the development and progression of hepatocellular carcinoma through epigenetic association. Long non-coding RNAs and circular RNAs act as competing endogenous RNAs that contain binding sites for miRNAs and thus compete with the miRNAs, which results in promotion of miRNA target gene expression, thereby leading to proliferation and metastasis of hepatocellular carcinoma. Competing endogenous RNAs have the potential to become diagnostic biomarkers and therapeutic targets for treatment of hepatocellular carcinoma. Abstract The three major members of non-coding RNAs (ncRNAs), named microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play an important role in hepatocellular carcinoma (HCC) development. Recently, the competing endogenous RNA (ceRNA) regulation model described lncRNA/circRNA as a sponge for miRNAs to indirectly regulate miRNA downstream target genes. Accumulating evidence has indicated that ceRNA regulatory networks are associated with biological processes in HCC, including cancer cell growth, epithelial to mesenchymal transition (EMT), metastasis, and chemoresistance. In this review, we summarize recent discoveries, which are specific ceRNA regulatory networks (lncRNA/circRNA-miRNA-mRNA) in HCC and discuss their clinical significance.
Collapse
Affiliation(s)
- Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
- Correspondence: (H.-S.C.); (H.S.B.)
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
- Correspondence: (H.-S.C.); (H.S.B.)
| |
Collapse
|
22
|
Fang Q, Liu H, Zhou A, Zhou H, Zhang Z. Circ_0046599 Promotes the Development of Hepatocellular Carcinoma by Regulating the miR-1258/RPN2 Network. Cancer Manag Res 2020; 12:6849-6860. [PMID: 32801909 PMCID: PMC7414927 DOI: 10.2147/cmar.s253510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background Many studies have confirmed that circular RNAs (circRNAs) play a key role in the biological progression of cancers. However, the function of a novel circRNA, circ_0046599, in hepatocellular carcinoma (HCC) progression has not been explored. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure the expression of circ_0046599, microRNA (miR)-1258 and Ribophorin II (RPN2). Subcellular fractionation location assay was used to localize circ_0046599 in HCC cells. The circular characteristic of circ_0046599 was verified using Ribonuclease R (RNase R) digestion assay. Besides, cell counting kit 8 (CCK8) assay, colony formation assay, wound healing assay and transwell assay were used to detect cell proliferation, migration and invasion, respectively. The lactate production and glucose level were determined by Lactate and Glucose Assay Kits. Furthermore, the protein levels of glycolysis, metastasis and proliferation-related marker proteins, as well as RPN2 were tested by Western blot (WB) analysis. Moreover, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were employed to confirm the interactions among circ_0046599, miR-1258 and RPN2. In addition, mice xenograft models were applied to observe the effect of circ_0046599 silencing on HCC tumor growth in vivo. Results Circ_0046599 was highly expressed in HCC tissues and cells, and its knockdown could suppress HCC cell proliferation, migration, invasion and glycolysis process. MiR-1258 could be targeted by circ_0046599, and its inhibitor could invert the suppressing effect of circ_0046599 knockdown on HCC progression. Further, RPN2 was a target of miR-1258. Overexpressed RPN2 could reverse the inhibiting effect of miR-1258 overexpression on HCC progression. Also, knockdown of circ_0046599 could restrain HCC tumor growth in vivo. Conclusion Our results provided new evidence that circ_0046599 could promote the progression of HCC by increasing RPN2 expression via sponging miR-1258.
Collapse
Affiliation(s)
- Quangang Fang
- Department of Laboratory, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Haiyun Liu
- Department of Laboratory, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Aiqun Zhou
- Department of Laboratory, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Huaping Zhou
- Department of Laboratory, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Zhiyong Zhang
- Department of Laboratory, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| |
Collapse
|
23
|
Mehrgou A, Ebadollahi S, Seidi K, Ayoubi-Joshaghani MH, Ahmadieh Yazdi A, Zare P, Jaymand M, Jahanban-Esfahlan R. Roles of miRNAs in Colorectal Cancer: Therapeutic Implications and Clinical Opportunities. Adv Pharm Bull 2020; 11:233-247. [PMID: 33880345 PMCID: PMC8046386 DOI: 10.34172/apb.2021.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/03/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most disseminated diseases across the globe engaging the digestive system. Various therapeutic methods from traditional to the state-of-the-art ones have been applied in CRC patients, however, the attempts have been unfortunate to lead to a definite cure. MiRNAs are a smart group of non-coding RNAs having the capabilities of regulating and controlling coding genes. By utilizing this stock-in-trade biomolecules, not only disease’s symptoms can be eliminated, there may also be a good chance for the complete cure of the disease in the near future. Herein, we provide a comprehensive review delineating the therapeutic relationship between miRNAs and CRC. To this, various clinical aspects of miRNAs which act as a tumor suppressor and/or an oncogene, their underlying cellular processes and clinical outcomes, and, in particular, their effects and expression level changes in patients treated with chemo- and radiotherapy are discussed. Finally, based on the results deducted from scientific research studies, therapeutic opportunities based on targeting/utilizing miRNAs in the preclinical as well as clinical settings are highlighted.
Collapse
Affiliation(s)
- Amir Mehrgou
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Ebadollahi
- Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, 9841 Tabriz, Iran
| | - Mohammad Hosein Ayoubi-Joshaghani
- Drug Applied Research Center, Tabriz University of Medical Sciences, 9841 Tabriz, Iran.,Student Research Committees, Tabriz University of Medical Sciences, 9841 Tabriz, Iran
| | | | - Peyman Zare
- Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rana Jahanban-Esfahlan
- Stem Cell Research Center, Tabriz University of Medical Sciences, 9841 Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Ren L, Li Q, Hu X, Yang Q, Du M, Xing Y, Wang Y, Li J, Zhang L. A Novel Mechanism of bta-miR-210 in Bovine Early Intramuscular Adipogenesis. Genes (Basel) 2020; 11:genes11060601. [PMID: 32485948 PMCID: PMC7349823 DOI: 10.3390/genes11060601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 02/04/2023] Open
Abstract
Intramuscular fat (IMF) is one of the major factors determining beef quality. IMF formation is influenced by multiple conditions including genetic background, age and nutrition. In our previous investigation, bta-miR-210 was found to be increased during adipogenesis using miRNA-seq. In this study, we validated the upregulation of bta-miR-210 in platelet-derived growth factor receptor α positive (PDGFRα+) progenitor cells during adipogenic differentiation in vitro. To investigate its role in adipogenesis, bta-miR-210 mimics were introduced into progenitor cells, which resulted in enhanced intracellular lipid accumulation. Accordingly, the expression of adipocyte-specific genes significantly increased in the bta-miR-210 mimic group compared to that in the negative control group (p < 0.01). Dual-luciferase reporter assays revealed that WISP2 is a target of bta-miR-210. WISP2 knockdown enhanced adipogenesis. In conclusion, bta-miR-210 positively regulates the adipogenesis of PDGFRα+ cells derived from bovine fetal muscle by targeting WISP2.
Collapse
Affiliation(s)
- Ling Ren
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Qian Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Xin Hu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Qiyuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Min Du
- Washington Center for Muscle Biology and Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA;
| | - Yishen Xing
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Yahui Wang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Junya Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Lupei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
- Correspondence: ; Tel.: +86-1062-890-940
| |
Collapse
|
25
|
Li W, Yang X, Shi C, Zhou Z. Hsa_circ_002178 Promotes the Growth and Migration of Breast Cancer Cells and Maintains Cancer Stem-like Cell Properties Through Regulating miR-1258/KDM7A Axis. Cell Transplant 2020; 29:963689720960174. [PMID: 32951449 PMCID: PMC7784609 DOI: 10.1177/0963689720960174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BrCa) is the most common malignancy in women. Accumulating evidence demonstrated that abnormal circRNA expression is associated with the occurrence and progression of tumors. We analyzed the GSE101123 data and found that the expression of hsa_circ_002178 (circ_002178) was significantly increased in BrCa tissues. However, the role and possible underlying mechanisms of circ_002178 in BrCa still remain unrevealed. In this investigation, the expression levels of circ_002178 in cancer tissues or BrCa cells were significantly upregulated compared with those in paracancer tissues or normal cells. High expression of circ_002178 was correlated with the low survival rate, clinical tumor size, lymph node metastasis, and tumor, nodes, and metastases grade. After microsphere culture, the expression of circ_002178 in SUM149PT and MDA-MB-231 cells was significantly increased. Further investigation exhibited that overexpression of circ_002178 contributed to the formation of microspheres, the elevated protein levels of stemness marker, and the increased activity of ALDH1 in SUM149PT cells. Besides, the overexpression of circ_002178 also significantly promoted the growth, invasion, and migration of BrCa cells. Correspondingly, the knockdown of circ_002178 showed the opposite result in MDA-MB-231 cells. Hsa_circ_002178 was further proved to downregulate the level of miR-1258 and reduce the inhibitory effect of miR-1258 on KDM7A, thus regulating the stem-like characteristics of BrCa cells and promoting the growth and migration of BrCa cells. Taken together, targeting the circ_002178/miR-1258/KDM7A axis may be a prospective strategy for the diagnosis and therapies of BrCa in the future.
Collapse
Affiliation(s)
- Wangyong Li
- Department of General Surgery, The First People’s Hospital of Wenling, Taizhou City, Zhejiang Province, P. R. China
| | - Xiaoyan Yang
- Department of Rehabilitation, The First People’s Hospital of Wenling, Taizhou City, Zhejiang Province, P. R. China
| | - Chengfei Shi
- Department of General Surgery, The First People’s Hospital of Wenling, Taizhou City, Zhejiang Province, P. R. China
| | - Zhengbo Zhou
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong Province, P. R. China
| |
Collapse
|