1
|
Kaur P, Sharma P, Bhatia P, Singh M. Recent advances on biogenesis, functions and therapeutic potential of long noncoding RNAs in T cell acute lymphoblastic leukemia. Discov Oncol 2024; 15:729. [PMID: 39612075 DOI: 10.1007/s12672-024-01618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
T-cell Acute Lymphoblastic Leukemia (T-ALL) is a highly aggressive form of ALL with at least 25% relapse rates. The high relapse rates are often linked to poor prognoses. More detailed studies for novel therapeutic targets for the treatment of T-ALL are required as the genetic and transcriptomic data currently available on T-ALL pathophysiology is insufficient. Long non-coding RNAs are emerging as important players in the regulation of tumour proliferation and metastasis. Studies on various cancers have revealed their potential as biomarkers and therapeutic targets in treatment. This review describes the characterization, biosynthesis, and role of long non-coding RNA in T-ALL and highlights their potential as next generation molecule in development of promising diagnostic, prognostic and/or therapeutic markers.
Collapse
Affiliation(s)
- Parminder Kaur
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Sharma
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Minu Singh
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
2
|
Shahamiri K, Alghasi A, Saki N, Teimori H, Kaydani GA, sheikhi S. Upregulation of the long noncoding RNA GJA9-MYCBP and PVT1 is a potential diagnostic biomarker for acute lymphoblastic leukemia. Cancer Rep (Hoboken) 2024; 7:e2115. [PMID: 38994720 PMCID: PMC11240143 DOI: 10.1002/cnr2.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common type of blood cancer in children. Aberrant expression of long noncoding RNAs (lncRNAs) may set stages for ALL development. LncRNAs are emerging as a novel diagnostic and prognostic biomarker for ALL. Herein, we aimed to evaluate the expression of lncRNA GJA9-MYCBP and PVT1 in blood samples of ALL and healthy individuals. METHODS As a case-control study, 40 pairs of ALL and healthy individual samples were used. The expression of MYC and each candidate lncRNA was measured using quantitative real-time PCR. Any possible association between the expression of putative noncoding RNAs and clinicopathological characteristics was also evaluated. RESULTS LncRNA GJA9-MYCBP and PVT1 were significantly upregulated in ALL samples compared with healthy ones. Similarly, mRNA levels of MYC were increased in ALL samples than control ones. Receiver operating characteristic curve analysis indicated a satisfactory diagnostic efficacy (p-value <.0001), suggesting that lncRNA GJA9-MYCBP and PVT1 may serve as a diagnostic biomarker for ALL. Linear regression analysis unveiled positive correlations between the expression level of MYC and lncRNA GJA9-MYCBP and PVT1 in ALL patients (p-values <.01). CONCLUSIONS In this study, we provided approval for the clinical diagnostic significance of lncRNA GJA9-MYCBP and PVT1that their upregulations may be a diagnostic biomarker for ALL.
Collapse
Affiliation(s)
- Kamal Shahamiri
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Arash Alghasi
- Thalassemia & Hemoglobinopathy Research center, Health research instituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research center, Health research instituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Gholam Abbas Kaydani
- Department of Laboratory Sciences, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Setare sheikhi
- Department of Hematology and Blood Transfusion, School of Allied Medical SciencesTehran University of Medical scienceTehranIran
| |
Collapse
|
3
|
Gong X, Hu T, Shen Q, Zhang L, Zhang W, Liu X, Zong S, Li X, Wang T, Yan W, Hu Y, Chen X, Zheng J, Zhang A, Wang J, Feng Y, Li C, Ma J, Gao X, Song Z, Zhang Y, Gale RP, Zhu X, Chen J. Gene expression prognostic of early relapse risk in low-risk B-cell acute lymphoblastic leukaemia in children. EJHAEM 2024; 5:333-345. [PMID: 38633121 PMCID: PMC11020147 DOI: 10.1002/jha2.872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 04/19/2024]
Abstract
ETV6::RUNX1 is the most common fusion gene in childhood acute lymphoblastic leukaemia (ALL) and is associated with favorable outcomes, especially in low-risk children. However, as many as 10% of children relapse within 3 years, and such early relapses have poor survival. Identifying children at risk for early relapse is an important challenge. We interrogated data from 87 children with low-risk ETV6::RUNX1-positive B-cell ALL and with available preserved bone marrow samples (discovery cohort). We profiled somatic point mutations in a panel of 559 genes and genome-wide transcriptome and single-nucleotide variants. We found high TIMD4 expression (> 85th-percentile value) at diagnosis was the most important independent prognostic factor of early relapse (hazard ratio [HR] = 5.07 [1.76, 14.62]; p = 0.03). In an independent validation cohort of low-risk ETV6::RUNX1-positive B-cell ALL (N = 68) high TIMD4 expression at diagnosis had an HR = 4.78 [1.07, 21.36] (p = 0.04) for early relapse. In another validation cohort including 78 children with low-risk ETV6::RUNX1-negative B-cell ALL, high TIMD4 expression at diagnosis had an HR = 3.93 [1.31, 11.79] (p = 0.01). Our results suggest high TIMD4 expression at diagnosis in low-risk B-cell ALL in children might be associated with high risk for early relapse.
Collapse
|
4
|
Lobo-Alves SC, Oliveira LAD, Kretzschmar GC, Valengo AE, Rosati R. Long noncoding RNA expression in acute lymphoblastic leukemia: A systematic review. Crit Rev Oncol Hematol 2024; 196:104290. [PMID: 38341118 DOI: 10.1016/j.critrevonc.2024.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), as gene expression modulators, are potential players in Acute Lymphoblastic Leukemia (ALL) pathogenesis. We systematically explored current literature on lncRNA expression in ALL to identify lncRNAs consistently reported as differentially expressed (DE) either in ALL versus controls or between ALL subtypes. By comparing articles that provided global expression data for DE lncRNAs in the ETV6::RUNX1-positive ALL subtype, we identified four DE lncRNAs in three independent studies (two versus other subtypes and one versus controls), showing concordant expression of LINC01013, CRNDE and lnc-KLF7-1. Additionally, LINC01503 was consistently downregulated on ALL versus controls. Within RT-qPCR studies, twelve lncRNA were DE in more than one source. Thus, several lncRNAs were supported as DE in ALL by multiple sources, highlighting their potential role as candidate biomarkers or therapeutic targets. Finally, as lncRNA annotation is rapidly expanding, standardization of reporting and nomenclature is urgently needed to improve data verifiability and compilation.
Collapse
Affiliation(s)
- Sara Cristina Lobo-Alves
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Liana Alves de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Gabriela Canalli Kretzschmar
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Andressa Eloisa Valengo
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil
| | - Roberto Rosati
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
5
|
Sharma P, Kaur P, Bhatia P, Trehan A, Sreedharanunni S, Singh M. Novel lncRNAs LINC01221, RP11-472G21.2 and CRNDE are markers of differential expression in pediatric patients with T cell acute lymphoblastic leukemia. Cancer Cell Int 2024; 24:65. [PMID: 38336706 PMCID: PMC10858595 DOI: 10.1186/s12935-024-03255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Pediatric T-cell acute lymphoblastic leukemia (T-ALL) poses significant challenges due to its aggressive nature and resistance to standard treatments. Long non-coding RNAs (lncRNAs) have emerged as potential biomarkers and therapeutic targets in leukemia. This study aims to characterize the lncRNA landscape in pediatric T-ALL, identify specific lncRNAs signatures, and assess their clinical relevance. METHODS RNA sequencing was performed on T-ALL patient and control samples. Differential expression analysis identified dysregulated lncRNAs and mRNAs. Functional enrichment analysis revealed potential roles of these lncRNAs in cancer pathogenesis. Validation of candidate lncRNAs was conducted using real-time PCR. Clinical correlations were assessed, including associations with patients' clinical characteristics and survival outcomes. RESULTS Analysis identified 674 dysregulated lncRNAs in pediatric T-ALL, with LINC01221 and CRNDE showing the most interactions in cancer progression pathways. Functional enrichment indicated involvement in apoptosis, survival, proliferation, and metastasis. Top 10 lncRNAs based on adjusted p value < 0.05 and Fold Change > 2 were selected for validation. Seven lncRNAs LINC01221, PCAT18, LINC00977, RP11-620J15.3, RP11-472G21.2, CTD-2291D10.4, and CRNDE showed correlation with RNA sequencing data. RP11-472G21.2 and CTD-2291D10.4 were highly expressed in T-ALL patients, with RP11-620J15.3 correlating significantly with better overall survival (p = 0.0007) at a median follow up of 32 months. The identified lncRNAs were further analysed in B-ALL patients. Distinct lncRNAs signatures were noted, distinguishing T-ALL from B-ALL and healthy controls, with lineage-specific overexpression of LINC01221 (p < 0.0001), RP11-472G21.2 (p < 0.001) and CRNDE (p = 0.04) in T-ALL. CONCLUSION This study provides insights into the lncRNA landscape of pediatric T-ALL, offering potential diagnostic and prognostic markers. RP11-620J15.3 emerges as a promising prognostic marker, and distinct lncRNAs signatures may aid in the differentiation of T-ALL subtypes. Further research with larger cohorts is warranted to validate these findings and advance personalized treatment strategies for pediatric T-ALL patients.
Collapse
Affiliation(s)
- Pankaj Sharma
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parminder Kaur
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Minu Singh
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
6
|
Cruz-Miranda GM, Olarte-Carrillo I, Bárcenas-López DA, Martínez-Tovar A, Ramírez-Bello J, Ramos-Peñafiel CO, García-Laguna AI, Cerón-Maldonado R, May-Hau D, Jiménez-Morales S. Transcriptome Analysis in Mexican Adults with Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:1750. [PMID: 38339034 PMCID: PMC10855968 DOI: 10.3390/ijms25031750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) represents around 25% of adult acute leukemias. Despite the increasing improvement in the survival rate of ALL patients during the last decade, the heterogeneous clinical and molecular features of this malignancy still represent a major challenge for treatment and achieving better outcomes. To identify aberrantly expressed genes in bone marrow (BM) samples from adults with ALL, transcriptomic analysis was performed using Affymetrix Human Transcriptome Array 2.0 (HTA 2.0). Differentially expressed genes (DEGs) (±2-fold change, p-value < 0.05, and FDR < 0.05) were detected using the Transcriptome Analysis Console. Gene Ontology (GO), Database for Annotation, Visualization, and Integrated Discovery (DAVID), and Ingenuity Pathway Analysis (IPA) were employed to identify gene function and define the enriched pathways of DEGs. The protein-protein interactions (PPIs) of DEGs were constructed. A total of 871 genes were differentially expressed, and DNTT, MYB, EBF1, SOX4, and ERG were the top five up-regulated genes. Meanwhile, the top five down-regulated genes were PTGS2, PPBP, ADGRE3, LUCAT1, and VCAN. An association between ERG, CDK6, and SOX4 expression levels and the probability of relapse and death was observed. Regulation of the immune system, immune response, cellular response to stimulus, as well as apoptosis signaling, inflammation mediated by chemokines and cytokines, and T cell activation were among the most altered biological processes and pathways, respectively. Transcriptome analysis of ALL in adults reveals a group of genes consistently associated with hematological malignancies and underscores their relevance in the development of ALL in adults.
Collapse
Affiliation(s)
- Gabriela Marisol Cruz-Miranda
- Programa de Doctorado, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (G.M.C.-M.)
- Laboratorio de Innovación en Medicina de Precisión Núcleo A, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| | - Irma Olarte-Carrillo
- Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico; (I.O.-C.); (A.M.-T.)
| | - Diego Alberto Bárcenas-López
- Programa de Doctorado, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (G.M.C.-M.)
- Laboratorio de Innovación en Medicina de Precisión Núcleo A, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| | - Adolfo Martínez-Tovar
- Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico; (I.O.-C.); (A.M.-T.)
| | - Julian Ramírez-Bello
- Subdirección de Investigación Clínica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | | | - Anel Irais García-Laguna
- Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico; (I.O.-C.); (A.M.-T.)
| | - Rafael Cerón-Maldonado
- Programa de Doctorado, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (G.M.C.-M.)
- Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico; (I.O.-C.); (A.M.-T.)
| | - Didier May-Hau
- Laboratorio de Innovación en Medicina de Precisión Núcleo A, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| | - Silvia Jiménez-Morales
- Laboratorio de Innovación en Medicina de Precisión Núcleo A, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| |
Collapse
|
7
|
Baghdadi H, Heidari R, Zavvar M, Ahmadi N, Shakouri Khomartash M, Vahidi M, Mohammadimehr M, Bashash D, Ghorbani M. Long Non-Coding RNA Signatures in Lymphopoiesis and Lymphoid Malignancies. Noncoding RNA 2023; 9:44. [PMID: 37624036 PMCID: PMC10458434 DOI: 10.3390/ncrna9040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Lymphoid cells play a critical role in the immune system, which includes three subgroups of T, B, and NK cells. Recognition of the complexity of the human genetics transcriptome in lymphopoiesis has revolutionized our understanding of the regulatory potential of RNA in normal lymphopoiesis and lymphoid malignancies. Long non-coding RNAs (lncRNAs) are a class of RNA molecules greater than 200 nucleotides in length. LncRNAs have recently attracted much attention due to their critical roles in various biological processes, including gene regulation, chromatin organization, and cell cycle control. LncRNAs can also be used for cell differentiation and cell fate, as their expression patterns are often specific to particular cell types or developmental stages. Additionally, lncRNAs have been implicated in lymphoid differentiation, such as regulating T-cell and B-cell development, and their expression has been linked to immune-associated diseases such as leukemia and lymphoma. In addition, lncRNAs have been investigated as potential biomarkers for diagnosis, prognosis, and therapeutic response to disease management. In this review, we provide an overview of the current knowledge about the regulatory role of lncRNAs in physiopathology processes during normal lymphopoiesis and lymphoid leukemia.
Collapse
Affiliation(s)
- Hamed Baghdadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
| | - Reza Heidari
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran 1411718541, Iran;
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran 443614177, Iran;
| | - Nazanin Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | | | - Mahmoud Vahidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Mojgan Mohammadimehr
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Mahdi Ghorbani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| |
Collapse
|
8
|
A review on the role of LINC00152 in different disorders. Pathol Res Pract 2023; 241:154274. [PMID: 36563561 DOI: 10.1016/j.prp.2022.154274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
LINC00152 is an important lncRNA in human disorders. It is mainly regarded as a tumor-promoting lncRNA. Mechanistically, LINC00152 serves as a molecular sponge for miR-143a-3p, miR-125a-5p, miR-139, miR-215, miR-193a/b-3p, miR-16-5p, miR-206, miR-195, miR-138, miR-185-5p, miR-103, miR-612, miR-150, miR-107, miR-205-5p and miR-153-3p. In addition, it can regulate activity of mTOR, EGFR/PI3K/AKT, ERK/MAPK, Wnt/β-Catenin, EGFR, NF-κB, HIF-1 and PTEN. In this review, we provide a concise but comprehensive explanation about the role of LINC00152 in tumor development and progression as well as its role in the pathology of non-malignant conditions with the aim of facilitating the clinical implementation of this lncRNA as a diagnostic or prognostic tumor marker and therapeutic target.
Collapse
|
9
|
Li S, Yao W, Liu R, Gao L, Lu Y, Zhang H, Liang X. Long non-coding RNA LINC00152 in cancer: Roles, mechanisms, and chemotherapy and radiotherapy resistance. Front Oncol 2022; 12:960193. [PMID: 36033524 PMCID: PMC9399773 DOI: 10.3389/fonc.2022.960193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNA LINC00152 (cytoskeleton regulator, or LINC00152) is an 828-bp lncRNA located on chromosome 2p11.2. LINC00152 was originally discovered during research on hepatocarcinogenesis and has since been regarded as a crucial oncogene that regulates gene expression in many cancer types. LINC00152 is aberrantly expressed in various cancers, including gastric, breast, ovarian, colorectal, hepatocellular, and lung cancer, and glioma. Several studies have indicated that LINC00152 is correlated with cell proliferation, apoptosis, migration, invasion, cell cycle, epithelial-mesenchymal transition (EMT), chemotherapy and radiotherapy resistance, and tumor growth and metastasis. High LINC00152 expression in most tumors is significantly associated with poor patient prognosis. Mechanistic analysis has demonstrated that LINC00152 can serve as a competing endogenous RNA (ceRNA) by sponging miRNA, regulating the abundance of the protein encoded by a particular gene, or modulating gene expression at the epigenetic level. LINC00152 can serve as a diagnostic or prognostic biomarker, as well as a therapeutic target for most cancer types. In the present review, we discuss the roles and mechanisms of LINC00152 in human cancer, focusing on its functions in chemotherapy and radiotherapy resistance.
Collapse
Affiliation(s)
- Shuang Li
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Jinzhou Medical University, Jinzhou, China
| | - Weiping Yao
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Ruiqi Liu
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Liang Gao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yanwei Lu
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Haibo Zhang
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaodong Liang, ; Haibo Zhang,
| | - Xiaodong Liang
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Xiaodong Liang, ; Haibo Zhang,
| |
Collapse
|
10
|
May-Hau DI, Bárcenas-López DA, Núñez-Enríquez JC, Bekker-Méndez VC, Beltrán-Anaya FO, Jiménez-Hernández E, Ortíz-Maganda MP, Guerra-Castillo FX, Medina-Sanson A, Flores-Lujano J, Martín-Trejo JA, Peñaloza-González JG, Velázquez-Aviña MM, Torres-Nava JR, Hernández-Echáurregui GA, Espinosa-Elizondo RM, Gutiérrez-Rivera MDL, Sanchez-Hernandez R, Pérez-Saldívar ML, Flores-Villegas LV, Merino-Pasaye LE, Duarte-Rodríguez DA, Mata-Rocha M, Sepúlveda-Robles OA, Rosas-Vargas H, Hidalgo-Miranda A, Mejía-Aranguré JM, Jiménez-Morales S. Underexpression of LINC00173 in TCF3/PBX1-Positive Cases Is Associated With Poor Prognosis in Children With B-Cell Precursor Acute Lymphoblastic Leukemia. Front Oncol 2022; 12:887766. [PMID: 35719952 PMCID: PMC9201104 DOI: 10.3389/fonc.2022.887766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most frequent pediatric cancer worldwide. Despite improvements in treatment regimens, approximately 20% of the cases cannot be cured, highlighting the necessity for identifying new biomarkers to improve the current clinical and molecular risk stratification schemes. We aimed to investigate whether LINC00173 is a biomarker in ALL and to explore its expression level in other human cancer types. Methods A nested case-control study including Mexican children with BCP-ALL was conducted. LINC00173 expression was evaluated by qRT-PCR using hydrolysis probes. To validate our findings, RNA-seq expression data from BCP-ALL and normal tissues were retrieved from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Genotype-Tissue Expression (GTEx) repositories, respectively. LINC00173 expression was also evaluated in solid tumors by downloading available data from The Cancer Genome Atlas (TCGA). Results A lower expression of LINC00173 in BCP-ALL cases compared to normal subjects was observed (p < 0.05). ALL patients who carry the TCF3/PBX1 fusion gene displayed lower expression of LINC00173 in contrast to other BCP-ALL molecular subtypes (p < 0.04). LINC00173 underexpression was associated with a high risk to relapse (HR = 1.946, 95% CI = 1.213-3.120) and die (HR = 2.073, 95% CI = 1.211-3.547). Patients with TCF3/PBX1 and underexpression of LINC00173 had the worst prognosis (DFS: HR = 12.24, 95% CI = 5.04-29.71; OS: HR = 11.19, 95% CI = 26-32). TCGA data analysis revealed that underexpression of LINC00173 is also associated with poor clinical outcomes in six new reported tumor types. Conclusion Our findings suggest that LINC00173 is a biomarker of poor prognosis in BCP-ALL and other types of cancer. We observed an association between the expression of LINC00173 and TCF3/PBX1 and the risk to relapse and die in BCP-ALL, which is worse in TCF3/PBX1-positive cases displaying underexpression of LINC00173. Experimental studies are needed to provide insight into the LINC00173 and TCF3/PBX relationship.
Collapse
Affiliation(s)
- Didier Ismael May-Hau
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Programa de Maestría en Investigación Clínica Experimental en Salud, Universidad Nacional Autónoma de Mexico, México City, Mexico
| | - Diego Alberto Bárcenas-López
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Programa de Doctorado, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Vilma Carolina Bekker-Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr. Daniel Méndez Hernández", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General "Gaudencio González Garza", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Mónica Patricia Ortíz-Maganda
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr. Daniel Méndez Hernández", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Francisco Xavier Guerra-Castillo
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr. Daniel Méndez Hernández", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Aurora Medina-Sanson
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología Pediátrica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México, Mexico City, Mexico
| | | | | | - María de Lourdes Gutiérrez-Rivera
- Servicio de Oncología Pediátrica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rodrigo Sanchez-Hernandez
- Servicio de Oncología Pediátrica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - María Luisa Pérez-Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Juan Manuel Mejía-Aranguré
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Medicine Faculty, Universidad Autónoma de México, Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
11
|
Song Z, Tang G, Zhuang C, Wang Y, Wang M, Lv D, Lu G, Meng J, Xia M, Zhu Z, Chai Y, Yang J, Liu Y. Metabolomic profiling of cerebrospinal fluid reveals an early diagnostic model for central nervous system involvement in acute lymphoblastic leukaemia. Br J Haematol 2022; 198:994-1010. [PMID: 35708546 DOI: 10.1111/bjh.18307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022]
Abstract
The pathogenesis of central nervous system involvement (CNSI) in patients with acute lymphoblastic leukaemia (ALL) remains unclear and a robust biomarker of early diagnosis is missing. An untargeted cerebrospinal fluid (CSF) metabolomics analysis was performed to identify independent risk biomarkers that could diagnose CNSI at the early stage. Thirty-three significantly altered metabolites between ALL patients with and without CNSI were identified, and a CNSI evaluation score (CES) was constructed to predict the risk of CNSI based on three independent risk factors (8-hydroxyguanosine, l-phenylalanine and hypoxanthine). This predictive model could diagnose CNSI with positive prediction values of 95.9% and 85.6% in the training and validation sets respectively. Moreover, CES score increased with the elevated level of central nervous system (CNSI) involvement. In addition, we validated this model by tracking the changes in CES at different stages of CNSI, including before CNSI and during CNSI, and in remission after CNSI. The CES showed good ability to predict the progress of CNSI. Finally, we constructed a nomogram to predict the risk of CNSI in clinical practice, which performed well compared with observed probability. This unique CSF metabolomics study may help us understand the pathogenesis of CNSI, diagnose CNSI at the early stage, and sequentially achieve personalized precision treatment.
Collapse
Affiliation(s)
- Zhiqiang Song
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Gusheng Tang
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chunlin Zhuang
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang Wang
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Mian Wang
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Diya Lv
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Guihua Lu
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jie Meng
- Department of Laboratory Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Min Xia
- Department of Hematology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyu Zhu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Jianmin Yang
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yue Liu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| |
Collapse
|
12
|
Maimaitiyiming Y, Ye L, Yang T, Yu W, Naranmandura H. Linear and Circular Long Non-Coding RNAs in Acute Lymphoblastic Leukemia: From Pathogenesis to Classification and Treatment. Int J Mol Sci 2022; 23:ijms23084442. [PMID: 35457264 PMCID: PMC9033105 DOI: 10.3390/ijms23084442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The coding regions account for only a small part of the human genome, and the remaining vast majority of the regions generate large amounts of non-coding RNAs. Although non-coding RNAs do not code for any protein, they are suggested to work as either tumor suppressers or oncogenes through modulating the expression of genes and functions of proteins at transcriptional, posttranscriptional and post-translational levels. Acute Lymphoblastic Leukemia (ALL) originates from malignant transformed B/T-precursor-stage lymphoid progenitors in the bone marrow (BM). The pathogenesis of ALL is closely associated with aberrant genetic alterations that block lymphoid differentiation and drive abnormal cell proliferation as well as survival. While treatment of pediatric ALL represents a major success story in chemotherapy-based elimination of a malignancy, adult ALL remains a devastating disease with relatively poor prognosis. Thus, novel aspects in the pathogenesis and progression of ALL, especially in the adult population, need to be further explored. Accumulating evidence indicated that genetic changes alone are rarely sufficient for development of ALL. Recent advances in cytogenic and sequencing technologies revealed epigenetic alterations including that of non-coding RNAs as cooperating events in ALL etiology and progression. While the role of micro RNAs in ALL has been extensively reviewed, less attention, relatively, has been paid to other non-coding RNAs. Herein, we review the involvement of linear and circular long non-coding RNAs in the etiology, maintenance, and progression of ALL, highlighting the contribution of these non-coding RNAs in ALL classification and diagnosis, risk stratification as well as treatment.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linyan Ye
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tao Yang
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Wenjuan Yu
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (W.Y.); (H.N.)
| | - Hua Naranmandura
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Correspondence: (W.Y.); (H.N.)
| |
Collapse
|
13
|
Illarregi U, Telleria J, Bilbao‑Aldaiturriaga N, Lopez‑Lopez E, Ballesteros J, Martin‑Guerrero I, Gutierrez‑Camino A. lncRNA deregulation in childhood acute lymphoblastic leukemia: A systematic review. Int J Oncol 2022; 60:59. [DOI: 10.3892/ijo.2022.5348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/03/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Unai Illarregi
- Department of Genetics, Physical Anthropology and Animal Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Jaione Telleria
- Department of Genetics, Physical Anthropology and Animal Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nerea Bilbao‑Aldaiturriaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Elixabet Lopez‑Lopez
- Department of Biochemistry and Molecular Biology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Javier Ballesteros
- Department of Neuroscience, University of The Basque Country (UPV/EHU) and CIBERSAM, Medical School, 48940 Leioa, Spain
| | - Idoia Martin‑Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Angela Gutierrez‑Camino
- Division of Hematology‑Oncology, CHU Sainte‑Justine Research Center, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
14
|
Ju JK, Han WN, Shi CL. Long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 gene (PVT1) modulates the proliferation and apoptosis of acute lymphoblastic leukemia cells by sponging miR-486-5p. Bioengineered 2022; 13:4587-4597. [PMID: 35152842 PMCID: PMC8973597 DOI: 10.1080/21655979.2022.2031405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 gene (PVT1) is related to the progress of various cancers. Here, we illuminated the role of PVT1 in acute lymphoblastic leukemia (ALL) cell proliferation and apoptosis. PVT1 was upregulated in plasma samples from patients with ALL and ALL cell lines. PVT1 silencing repressed cell viability and enhanced cell apoptosis in Jurkat and SUP-B15 cells. PVT1 targeted microRNA-486-5p (miR-486-5p) and negatively modulated miR-486-5p expression. Upregulation of miR-486-5p decreased cell viability and increased ALL cell apoptosis. Mastermind Like Transcriptional Coactivator 3 (MAML3) was a downstream molecule of miR-486-5p and miR-486-5p mimic transfection weakened its expression in ALL cells. Rescue experiments proved that reintroduction of PVT1 counteracted the impacts of miR-486-5p in ALL cell proliferation and apoptosis. In vivo, PVT1 silencing repressed the tumor growth of SUP-B15 cells and reduced the expression of MAML3. Altogether, silencing of PVT1 inhibited ALL cell growth and induced cell apoptosis through sponging miR-486-5p.
Collapse
Affiliation(s)
- Jin-Ke Ju
- Department of Pediatrics, Changyi People’s Hospital, Changyi, China
| | - Wei-Na Han
- Department of General Surgery, Changyi People’s Hospital, Changyi, China
| | - Cai-Ling Shi
- Department of Pediatrics, Changyi People’s Hospital, Changyi, China
| |
Collapse
|
15
|
Xia J, Wang M, Zhu Y, Bu C, Li T. Differential mRNA and long noncoding RNA expression profiles in pediatric B-cell acute lymphoblastic leukemia patients. BMC Pediatr 2022; 22:10. [PMID: 34980027 PMCID: PMC8722040 DOI: 10.1186/s12887-021-03073-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides (nt) that are involved in the pathogenesis and development of various cancers including B cell acute lymphoblastic leukemia (B-ALL). To determine the potential roles of lncRNAs involved in pathogenesis of B-ALL, we analyzed the expression profile of lncRNAs and mRNAs in B-ALL, respectively, and constructed lncRNAs/mRNAs interaction network. METHODS We performed RNA sequencing of 10 non-leukemic blood disease donors and 10 B-ALL patients for Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Interactions among mRNAs were predicted using the STRING database. Quantitative real time PCR (qRT-PCR) was performed to verify the RNA-seq data of lncRNAs and mRNAs. Potential functions of subtype-specific lncRNAs were determined by using coexpression-based analysis on distally (trans-pattern) located protein-coding genes. RESULTS A total of 1813 differentially expressed transcripts (DETs) and 2203 lncRNAs were identified. Moreover, 10 dysregulated lncRNAs and 10 mRNAs were randomly selected, and further assessed by RT-qPCR in vitro. Go and KEGG analysis demonstrated that the differentially expressed mRNAs were most closely associated with myeloid leukocyte activation and in transcriptional misregulation in cancer, respectively. In addition, co-expression analysis demonstrated that these lncRNAs, including MSTRG.27994.3, MSTRG.21740.1, ENST00000456341, MSTRG.14224.1 and MSTRG.20153.1, may mediate the pathogenesis and development of B-ALL via lncRNA-mRNA network interactions. CONCLUSIONS These results showed that several mRNAs and lncRNAs are aberrantly expressed in the bone marrow of B-ALL patients and play potential roles in B-ALL development, and be useful for diagnostic and/or prognostic purposes in pediatric B-ALL. DATA AVAILABILITY The datasets used during our study are available through HARVARD Dataverse Persistent ID doi: https://doi.org/10.7910/DVN/LK9T4Z .
Collapse
Affiliation(s)
- Jing Xia
- Department of Pediatric Laboratory, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Mengjie Wang
- Department of hematology & oncology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Yi Zhu
- Department of hematology & oncology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Chaozhi Bu
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, China.
| | - Tianyu Li
- Department of hematology & oncology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
16
|
Matis S, Rossi M, Brondolo L, Cardillo M, Reverberi D, Massara R, Colombo M, Ibatici A, Angelucci E, Vaisitti T, Bruno S, Fabris S, Neri A, Gentile M, Morabito F, Cutrona G, Briata P, Gherzi R, Fais F. LINC00152 expression in normal and Chronic Lymphocytic Leukemia B cells. Hematol Oncol 2021; 40:40-47. [PMID: 34679195 PMCID: PMC9297877 DOI: 10.1002/hon.2938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
Long non‐coding RNAs are emerging as essential regulators of gene expression, but their role in normal and neoplastic B cells is still largely uncharacterized. Here, we report on the expression pattern of the LINC00152 in normal B cells and Chronic Lymphocytic Leukemia B cell clones. Higher LINC00152 levels were consistently observed in memory B cell populations when compared to naïve B cells in the normal tissues analyzed [peripheral blood (PB), tonsils, and spleen]. In addition, independent stimulation via Immunoglobulins (IG), CD40, or Toll‐like Receptor 9 (TLR9) upregulated LINC00152 in PB B cells. The expression of LINC00152 in a cohort of 107 early stage Binet A CLL patients was highly variable and did not correlate with known prognostic markers or clinical evolution. TLR9 stimulation, but not CD40 or IG challenge, was able to upregulate LINC00152 expression in CLL cells. In addition, LINC00152 silencing in CLL cell lines expressing LINC00152 failed to induce significant cell survival or apoptosis changes. These data suggest that, in normal B cells, the expression of LINC00152 is regulated by immunomodulatory signals, which are only partially effective in CLL cells. However, LINC00152 does not appear to contribute to CLL cell expansion and/or survival in a cohort of newly diagnosed CLL patients.
Collapse
Affiliation(s)
- Serena Matis
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Martina Rossi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo Brondolo
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Martina Cardillo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Reverberi
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Rosanna Massara
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Colombo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Adalberto Ibatici
- Hematology Unit and Transplant Center, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuele Angelucci
- Hematology Unit and Transplant Center, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sonia Fabris
- Fondazione Cà Granda IRCCS, Hematology Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Antonino Neri
- Fondazione Cà Granda IRCCS, Hematology Ospedale Maggiore Policlinico Milano, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Fortunato Morabito
- Biotechnology Research Unit, AO, Cosenza, Italy.,Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Briata
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Gherzi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
17
|
Rodriguez PD, Paculova H, Kogut S, Heath J, Schjerven H, Frietze S. Non-Coding RNA Signatures of B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:ijms22052683. [PMID: 33799946 PMCID: PMC7961854 DOI: 10.3390/ijms22052683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) comprise a diverse class of non-protein coding transcripts that regulate critical cellular processes associated with cancer. Advances in RNA-sequencing (RNA-Seq) have led to the characterization of non-coding RNA expression across different types of human cancers. Through comprehensive RNA-Seq profiling, a growing number of studies demonstrate that ncRNAs, including long non-coding RNA (lncRNAs) and microRNAs (miRNA), play central roles in progenitor B-cell acute lymphoblastic leukemia (B-ALL) pathogenesis. Furthermore, due to their central roles in cellular homeostasis and their potential as biomarkers, the study of ncRNAs continues to provide new insight into the molecular mechanisms of B-ALL. This article reviews the ncRNA signatures reported for all B-ALL subtypes, focusing on technological developments in transcriptome profiling and recently discovered examples of ncRNAs with biologic and therapeutic relevance in B-ALL.
Collapse
Affiliation(s)
- Princess D. Rodriguez
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Sophie Kogut
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Jessica Heath
- The University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA;
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
- Department of Pediatrics, University of Vermont, Burlington, VT 05405, USA
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA;
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
- The University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA;
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
18
|
Cuadros M, García DJ, Andrades A, Arenas AM, Coira IF, Baliñas-Gavira C, Peinado P, Rodríguez MI, Álvarez-Pérez JC, Ruiz-Cabello F, Camós M, Jiménez-Velasco A, Medina PP. LncRNA-mRNA Co-Expression Analysis Identifies AL133346.1/CCN2 as Biomarkers in Pediatric B-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2020; 12:cancers12123803. [PMID: 33348573 PMCID: PMC7765782 DOI: 10.3390/cancers12123803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Dysregulation of noncoding RNAs has been described in numerous types of cancers and it has been associated with oncogenic or tumor suppressor activities. However, the signature of clinically relevant noncoding RNAs in pediatric B-cell acute lymphoblastic leukemia is still poorly understood. In a search for long non-coding RNAs that characterize pediatric B-cell acute lymphoblastic leukemia, we found that the long non-coding RNA AL133346.1 and a neighbouring protein-coding mRNA (CCN2) were significantly over-expressed in leukemia samples compared to healthy bone marrow. Survival analysis showed that patients with high CCN2 expression had a significantly better prognosis. These data suggest that AL133346.1/CCN2 could be useful for discriminating subtypes of leukemia and that CCN2 expression could predict the prognosis of pediatric patients with B-cell acute lymphoblastic leukemia. Abstract Pediatric acute B-cell lymphoblastic leukemia (B-ALL) constitutes a heterogeneous and aggressive neoplasia in which new targeted therapies are required. Long non-coding RNAs have recently emerged as promising disease-specific biomarkers for the clinic. Here, we identified pediatric B-ALL-specific lncRNAs and associated mRNAs by comparing the transcriptomic signatures of tumoral and non-tumoral samples. We identified 48 lncRNAs that were differentially expressed between pediatric B-ALL and healthy bone marrow samples. The most relevant lncRNA/mRNA pair was AL133346.1/CCN2 (previously known as RP11-69I8.3/CTGF), whose expression was positively correlated and increased in B-ALL samples. Their differential expression pattern and their strong correlation were validated in external B-ALL datasets (Therapeutically Applicable Research to Generate Effective Treatments, Cancer Cell Line Encyclopedia). Survival curve analysis demonstrated that patients with “high” expression levels of CCN2 had higher overall survival than those with “low” levels (p = 0.042), and this gene might be an independent prognostic biomarker in pediatric B-ALL. These findings provide one of the first detailed descriptions of lncRNA expression profiles in pediatric B-ALL and indicate that these potential biomarkers could help in the classification of leukemia subtypes and that CCN2 expression could predict the survival outcome of pediatric B-cell acute lymphoblastic leukemia patients.
Collapse
Affiliation(s)
- Marta Cuadros
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Av. de la Investigación 11, 18016 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración 114, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs. Granada), Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Daniel J García
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Av. de la Investigación 11, 18016 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración 114, 18016 Granada, Spain
| | - Alvaro Andrades
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración 114, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs. Granada), Av. Fuerzas Armadas 2, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Av. de Fuente Nueva S/N, 18071 Granada, Spain
| | - Alberto M Arenas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Av. de Fuente Nueva S/N, 18071 Granada, Spain
| | - Isabel F Coira
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Av. de Fuente Nueva S/N, 18071 Granada, Spain
| | - Carlos Baliñas-Gavira
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración 114, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs. Granada), Av. Fuerzas Armadas 2, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Av. de Fuente Nueva S/N, 18071 Granada, Spain
| | - Paola Peinado
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración 114, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs. Granada), Av. Fuerzas Armadas 2, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Av. de Fuente Nueva S/N, 18071 Granada, Spain
| | - María I Rodríguez
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Av. de la Investigación 11, 18016 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración 114, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs. Granada), Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Juan Carlos Álvarez-Pérez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración 114, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs. Granada), Av. Fuerzas Armadas 2, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Av. de Fuente Nueva S/N, 18071 Granada, Spain
| | - Francisco Ruiz-Cabello
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Av. de la Investigación 11, 18016 Granada, Spain
- Department of Clinical Analysis and Immunology, UGC Laboratorio Clínico, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Mireia Camós
- Hematology Laboratory, Institut de Recerca Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Antonio Jiménez-Velasco
- Hematology Laboratory, Universitary Regional Hospital, Av. de Carlos Haya, 29010 Málaga, Spain
| | - Pedro P Medina
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración 114, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs. Granada), Av. Fuerzas Armadas 2, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Av. de Fuente Nueva S/N, 18071 Granada, Spain
| |
Collapse
|
19
|
Huang Y, Li J, Chen Y, Jiang P, Wang L, Hu J. Identification of Early Recurrence Factors in Childhood and Adolescent B-Cell Acute Lymphoblastic Leukemia Based on Integrated Bioinformatics Analysis. Front Oncol 2020; 10:565455. [PMID: 33134167 PMCID: PMC7550668 DOI: 10.3389/fonc.2020.565455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Over the past 50 years, great progress has been made in the diagnosis and treatment of acute lymphoblastic leukemia (ALL), especially in pediatric patients. However, early recurrence is still an important threat to the survival of patients. In this study, we used integrated bioinformatics analysis to look for biomarkers of early recurrence of B-cell ALL (B-ALL) in childhood and adolescent patients. Firstly, we obtained gene expression profiles from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and the Gene Expression Omnibus (GEO) database. Then, we identified differentially expressed genes (DEGs) based on whether the disease relapsed early. LASSO and Cox regression analysis were applied to identify a subset of four genes: HOXA7, S100A11, S100A10, and IFI44L. A genetic risk score model was constructed based on these four optimal prognostic genes. Time-dependent receiver operating characteristic (ROC) curves were used to evaluate the predictive value of this prognostic model (3-, 5-, and 10-year AUC values >0.7). The risk model was significantly associated with overall survival (OS) and event-free survival in B-ALL (all p < 0.0001). In addition, a high risk score was an independent poor prognostic risk factor for OS (p < 0.001; HR = 3.396; 95% CI: 2.387-4.832). Finally, the genetic risk model was successfully tested in B-ALL using an external validation set. The results suggested that this model could be a novel predictive tool for early recurrence and prognosis of B-ALL.
Collapse
Affiliation(s)
- Yan Huang
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiazheng Li
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanxin Chen
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peifang Jiang
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lingyan Wang
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianda Hu
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|