1
|
Hu Z, Lin G, Zhang M, Piao S, Fan J, Liu J, Liu P, Fu S, Sun W, Li L, Qiu X, Zhang J, Yang Y, Zhou C. Mechanistic Characterization of De Novo Generation of Variable Number Tandem Repeats in Circular Plasmids during Site-Directed Mutagenesis and Optimization for Coding Gene Application. Adv Biol (Weinh) 2024; 8:e2400084. [PMID: 38880850 DOI: 10.1002/adbi.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Indexed: 06/18/2024]
Abstract
Site-directed mutagenesis for creating point mutations, sometimes, gives rise to plasmids carrying variable number tandem repeats (VNTRs) locally, which are arbitrarily regarded as polymerase chain reaction (PCR) related artifacts. Here, the alternative end-joining mechanism is reported rather than PCR artifacts accounts largely for that VNTRs formation and expansion. During generating a point mutation on GPLD1 gene, an unexpected formation of VNTRs employing the 31 bp mutagenesis primers is observed as the repeat unit in the pcDNA3.1-GPLD1 plasmid. The 31 bp VNTRs are formed in 24.75% of the resulting clones with copy number varied from 2 to 13. All repeat units are aligned with the same orientation as GPLD1 gene. 43.54% of the repeat junctions harbor nucleotide mutations while the rest don't. Their demonstrated short primers spanning the 3' part of the mutagenesis primers are essential for initial creation of the 2-copy tandem repeats (TRs) in circular plasmids. The dimerization of mutagenesis primers by the alternative end-joining in a correct orientation is required for further expansion of the 2-copy TRs. Lastly, a half-double priming strategy is established, verified the findings and offered a simple method for VNTRs creation on coding genes in circular plasmids without junction mutations.
Collapse
Affiliation(s)
- Ziqi Hu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Guochao Lin
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Mingzhu Zhang
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Shengwen Piao
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jiankun Fan
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jichao Liu
- The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Peng Liu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Songbin Fu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, China
| | - Wenjing Sun
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, China
| | - Li Li
- The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Xiaohong Qiu
- The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Jinwei Zhang
- The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Yu Yang
- The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Chunshui Zhou
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, China
| |
Collapse
|
2
|
Dinh N, Bonnefoy N. Schizosaccharomyces pombe as a fundamental model for research on mitochondrial gene expression: Progress, achievements and outlooks. IUBMB Life 2024; 76:397-419. [PMID: 38117001 DOI: 10.1002/iub.2801] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Schizosaccharomyces pombe (fission yeast) is an attractive model for mitochondrial research. The organism resembles human cells in terms of mitochondrial inheritance, mitochondrial transport, sugar metabolism, mitogenome structure and dependence of viability on the mitogenome (the petite-negative phenotype). Transcriptions of these genomes produce only a few polycistronic transcripts, which then undergo processing as per the tRNA punctuation model. In general, the machinery for mitochondrial gene expression is structurally and functionally conserved between fission yeast and humans. Furthermore, molecular research on S. pombe is supported by a considerable number of experimental techniques and database resources. Owing to these advantages, fission yeast has significantly contributed to biomedical and fundamental research. Here, we review the current state of knowledge regarding S. pombe mitochondrial gene expression, and emphasise the pertinence of fission yeast as both a model and tool, especially for studies on mitochondrial translation.
Collapse
Affiliation(s)
- Nhu Dinh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette cedex, France
| | - Nathalie Bonnefoy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
3
|
Seel A, Padovani F, Mayer M, Finster A, Bureik D, Thoma F, Osman C, Klecker T, Schmoller KM. Regulation with cell size ensures mitochondrial DNA homeostasis during cell growth. Nat Struct Mol Biol 2023; 30:1549-1560. [PMID: 37679564 PMCID: PMC10584693 DOI: 10.1038/s41594-023-01091-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2023]
Abstract
To maintain stable DNA concentrations, proliferating cells need to coordinate DNA replication with cell growth. For nuclear DNA, eukaryotic cells achieve this by coupling DNA replication to cell-cycle progression, ensuring that DNA is doubled exactly once per cell cycle. By contrast, mitochondrial DNA replication is typically not strictly coupled to the cell cycle, leaving the open question of how cells maintain the correct amount of mitochondrial DNA during cell growth. Here, we show that in budding yeast, mitochondrial DNA copy number increases with cell volume, both in asynchronously cycling populations and during G1 arrest. Our findings suggest that cell-volume-dependent mitochondrial DNA maintenance is achieved through nuclear-encoded limiting factors, including the mitochondrial DNA polymerase Mip1 and the packaging factor Abf2, whose amount increases in proportion to cell volume. By directly linking mitochondrial DNA maintenance to nuclear protein synthesis and thus cell growth, constant mitochondrial DNA concentrations can be robustly maintained without a need for cell-cycle-dependent regulation.
Collapse
Affiliation(s)
- Anika Seel
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Moritz Mayer
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Alissa Finster
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniela Bureik
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Felix Thoma
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Till Klecker
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
4
|
Complete Mitochondrial Genomes of Four Pelodiscus sinensis Strains and Comparison with Other Trionychidae Species. BIOLOGY 2023; 12:biology12030406. [PMID: 36979098 PMCID: PMC10045651 DOI: 10.3390/biology12030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important aquaculture reptile with rich nutritional and medicinal values. In recent decades, the wild resources of P. sinensis have been depleting due to natural and artificial factors. Herein, we report the complete mitochondrial genome of four P. sinensis strains, including the Japanese (RB) strain, Qingxi Huabie (HB) strain, Jiangxi (JB) strain, and Qingxi Wubie (WB) strain. The nucleotide composition within the complete mitogenomes was biased towards A + T with a variable frequency ranging from 59.28% (cox3) to 70.31% (atp8). The mitogenomes of all four strains contained 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, 1 control region, and a replication origin region of the L-strand replication (OL), which was consistent with most vertebrates. Additionally, the atp8, nad4l, nad6, and nad3 genes possessed high genetic variation and can be used as potential markers for the identification of these P. sinensis strains. Additionally, all PCGs genes were evolving primarily under purifying selection. Through comparative analysis, it was revealed that most of the tRNAs were structurally different in the TψC stem, DHU stem, and acceptor stem. The length of the tandem repeats in the control region was variable in the four P. sinensis strains, ranging from 2 bp to 50 bp. Phylogenetic analysis indicated that all P. sinensis strains clustered into one branch and were closely related to other Trionychinae species. Overall, this study provides mitochondrial genome information for different P. sinensis strains to support further species identification and germplasm resource conservation.
Collapse
|
5
|
Zhong XY, Guo Y, Fan Z. Increased level of free-circulating MtDNA in maintenance hemodialysis patients: Possible role in systemic inflammation. J Clin Lab Anal 2022; 36:e24558. [PMID: 35708020 PMCID: PMC9279998 DOI: 10.1002/jcla.24558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/17/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Background Mitochondrial DNA (MtDNA) exposed to the extracellular space due to cell death and stress has immunostimulatory properties. However, the clinical significance of circulating MtDNA in maintenance hemodialysis (MHD) patients and the precise mechanism of its emergence have yet to be investigated. Methods This cross‐sectional study consisted of 52 MHD patients and 32 age‐ and sex‐matched healthy controls. MHD patients were further categorized into high and low circulating cell‐free MtDNA (ccf‐MtDNA) groups based on the median value. Copy number of MtDNA was quantified using TaqMan‐based qPCR. Plasma cytokines were measured using ELISA kits. Reactive oxygen species (ROS) and mitochondrial membrane potential (Δψm) in peripheral blood mononuclear cells (PBMCs) were detected using DCFH‐DA or JC‐1 staining. Results The copy numbers of ccf‐MtDNA in patients with MHD were higher than those in healthy controls, and these alterations were correlated with changes of cytokines TNF‐α and IL‐6. Adjusted model in multivariate analysis showed that the presence of anuria and longer dialysis vintage were independently associated with higher levels of ccf‐MtDNA. Meanwhile, although not statistically significant, an inverse correlative trend between urinary MtDNA and ccf‐MtDNA was observed in patients with residual urine. Afterward, using PBMCs as surrogates for mitochondria‐rich cells, we found that patients in the high ccf‐MtDNA group exhibited a significantly higher ROS production and lower Δψm in cells. Conclusions Our data suggested that changes in ccf‐MtDNA correlate with the degree of inflammatory status in MHD patients, and that the excessive MtDNA may be caused by mitochondrial dysfunction and reduced urinary MtDNA excretion.
Collapse
Affiliation(s)
- Xiao-Yi Zhong
- Department of Nephrology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Guo
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Fan
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Morales-García L, Ricardez-García C, Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S. Coupling/Uncoupling Reversibility in Isolated Mitochondria from Saccharomyces cerevisiae. Life (Basel) 2021; 11:life11121307. [PMID: 34947838 PMCID: PMC8707985 DOI: 10.3390/life11121307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
The yeast Saccharomyces cerevisiae uses fermentation as the preferred pathway to obtain ATP and requires the respiratory chain to re-oxidize the NADH needed for activity of Glyceraldehyde-3-phosphate. This process is favored by uncoupling of oxidative phosphorylation (OxPhos), which is at least partially controlled by the mitochondrial unspecific pore (ScMUC). When mitochondrial ATP synthesis is needed as in the diauxic phase or during mating, a large rise in Ca2+ concentration ([Ca2+]) closes ScMUC, coupling OxPhos. In addition, ScMUC opening/closing is mediated by the ATP/ADP ratio, which indicates cellular energy needs. Here, opening and closing of ScMUC was evaluated in isolated mitochondria from S. cerevisiae at different incubation times and in the presence of different ATP/ADP ratios or varying [Ca2+]. Measurements of the rate of O2 consumption, mitochondrial swelling, transmembrane potential and ROS generation were conducted. It was observed that ScMUC opening was reversible, a high ATP/ADP ratio promoted opening and [Ca2+] closed ScMUC even after several minutes of incubation in the open state. In the absence of ATP synthesis, closure of ScMUC resulted in an increase in ROS.
Collapse
Affiliation(s)
- Lilia Morales-García
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, UNAM, Mexico City 04510, Mexico; (L.M.-G.); (C.R.-G.); (P.C.-T.); (N.C.-F.)
- Department of Biochemistry, Medicine School, UNAM, Mexico City 04510, Mexico
| | - Carolina Ricardez-García
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, UNAM, Mexico City 04510, Mexico; (L.M.-G.); (C.R.-G.); (P.C.-T.); (N.C.-F.)
| | - Paulina Castañeda-Tamez
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, UNAM, Mexico City 04510, Mexico; (L.M.-G.); (C.R.-G.); (P.C.-T.); (N.C.-F.)
| | - Natalia Chiquete-Félix
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, UNAM, Mexico City 04510, Mexico; (L.M.-G.); (C.R.-G.); (P.C.-T.); (N.C.-F.)
| | - Salvador Uribe-Carvajal
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, UNAM, Mexico City 04510, Mexico; (L.M.-G.); (C.R.-G.); (P.C.-T.); (N.C.-F.)
- Department of Biochemistry, Medicine School, UNAM, Mexico City 04510, Mexico
- Correspondence: ; Tel.: +52-5555625632
| |
Collapse
|
7
|
Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes (Basel) 2021; 12:genes12121866. [PMID: 34946817 PMCID: PMC8701800 DOI: 10.3390/genes12121866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as mtDNA depletion, or in qualitative defects in mtDNA, especially in multiple deletions. Since, in the last decade, most of the novel mutations have been identified through whole-exome sequencing, it is crucial to confirm the pathogenicity by functional analysis in the appropriate model systems. Among these, the yeast Saccharomyces cerevisiae has proved to be a good model for studying mutations associated with mtDNA instability. This review focuses on the use of yeast for evaluating the pathogenicity of mutations in six genes, MPV17/SYM1, MRM2/MRM2, OPA1/MGM1, POLG/MIP1, RRM2B/RNR2, and SLC25A4/AAC2, all associated with mtDNA depletion or multiple deletions. We highlight the techniques used to construct a specific model and to measure the mtDNA instability as well as the main results obtained. We then report the contribution that yeast has given in understanding the pathogenic mechanisms of the mutant variants, in finding the genetic suppressors of the mitochondrial defects and in the discovery of molecules able to improve the mtDNA stability.
Collapse
|
8
|
Waneka G, Svendsen JM, Havird JC, Sloan DB. Mitochondrial mutations in Caenorhabditis elegans show signatures of oxidative damage and an AT-bias. Genetics 2021; 219:6346985. [PMID: 34849888 DOI: 10.1093/genetics/iyab116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/09/2021] [Indexed: 01/25/2023] Open
Abstract
Rapid mutation rates are typical of mitochondrial genomes (mtDNAs) in animals, but it is not clear why. The difficulty of obtaining measurements of mtDNA mutation that are not biased by natural selection has stymied efforts to distinguish between competing hypotheses about the causes of high mtDNA mutation rates. Several studies which have measured mtDNA mutations in nematodes have yielded small datasets with conflicting conclusions about the relative abundance of different substitution classes (i.e., the mutation spectrum). We therefore leveraged Duplex Sequencing, a high-fidelity DNA sequencing technique, to characterize de novo mtDNA mutations in Caenorhabditis elegans. This approach detected nearly an order of magnitude more mtDNA mutations than documented in any previous nematode mutation study. Despite an existing extreme AT bias in the C. elegans mtDNA (75.6% AT), we found that a significant majority of mutations increase genomic AT content. Compared to some prior studies in nematodes and other animals, the mutation spectrum reported here contains an abundance of CG→AT transversions, supporting the hypothesis that oxidative damage may be a driver of mtDNA mutations in nematodes. Furthermore, we found an excess of G→T and C→T changes on the coding DNA strand relative to the template strand, consistent with increased exposure to oxidative damage. Analysis of the distribution of mutations across the mtDNA revealed significant variation among protein-coding genes and as well as among neighboring nucleotides. This high-resolution view of mitochondrial mutations in C. elegans highlights the value of this system for understanding relationships among oxidative damage, replication error, and mtDNA mutation.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA and
| | - Joshua M Svendsen
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA and
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA and
| |
Collapse
|