1
|
Jeong MJ, Kim YC, Jeong BH. First Report of Polymorphisms and Genetic Characteristics of Prion-like Protein Gene ( PRND) in Cats. Animals (Basel) 2024; 14:3438. [PMID: 39682402 DOI: 10.3390/ani14233438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Prion diseases are fatal neurodegenerative disorders caused by the misfolding of the normal cellular prion protein (PrPC) into its infectious isoform (PrPSc). Although prion diseases in humans, sheep, goats, and cattle have been extensively studied, feline spongiform encephalopathy (FSE) remains poorly understood. Genetic factors, particularly polymorphisms in the prion protein gene (PRNP) and prion-like protein gene (PRND), have been linked to prion disease susceptibility in various species. However, no studies have yet investigated the PRND gene in cats with respect to prion diseases. Therefore, we investigated polymorphisms in the feline PRND gene and analyzed their genetic characteristics. We sequenced the coding region of the PRND gene using samples from 210 domestic cats and determined the genotype and allele frequencies of PRND polymorphisms. We identified thirteen novel single nucleotide polymorphisms (SNPs), including six non-synonymous variants and one insertion/deletion (InDel) in the feline PRND gene. Four of the non-synonymous SNPs were predicted to have deleterious effects on the Doppel protein's structure and function. Notably, the SNP c.97A>G (I33V) showed potential structural clashes, and the others formed additional hydrogen bonds. The LD analysis revealed strong genetic associations between the PRND SNPs and the PRNP InDel, suggesting linkage between these loci in cats. This study identifies novel PRND polymorphisms in domestic cats and provides new insights into the genetic factors underlying feline susceptibility to prion diseases. The strong genetic linkage between PRND and PRNP polymorphisms, coupled with predictions of detrimental effects on Doppel protein structure, suggests that PRND gene variants could influence prion disease progression in cats. These findings provide a foundational framework for future studies on the functional implications of PRND polymorphisms in FSE. To the best of our knowledge, this study is the first report on the genetic characteristics of PRND polymorphisms in cats.
Collapse
Affiliation(s)
- Min-Ju Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120 Hana-ro, Iksan 54531, Republic of Korea
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120 Hana-ro, Iksan 54531, Republic of Korea
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Jeong MJ, Kim YC, Jeong BH. The first report of single nucleotide polymorphisms in the open reading frame of the prion-like protein gene in rabbits. Front Vet Sci 2024; 11:1388339. [PMID: 38952802 PMCID: PMC11216025 DOI: 10.3389/fvets.2024.1388339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 07/03/2024] Open
Abstract
Background Natural cases of prion disease have not been reported in rabbits, and prior attempts to identify a prion conversion agent have been unsuccessful. However, recent applications of prion seed amplifying experimental techniques have sparked renewed interest in the potential susceptibility of rabbits to prion disease infections. Among several factors related to prion disease, polymorphisms within the prion-like protein gene (PRND), a member of the prion protein family, have been reported as significantly associated with disease susceptibility in various species. Therefore, our study aimed to investigate polymorphisms in the PRND gene of rabbits and analyze their genetic characteristics. Methods Genomic DNA was extracted from 207 rabbit samples to investigate leporine PRND polymorphisms. Subsequently, amplicon sequencing targeting the coding region of the leporine PRND gene was conducted. Additionally, linkage disequilibrium (LD) analysis was employed to assess the connection within and between loci. The impact of non-synonymous single nucleotide polymorphisms (SNPs) on the Doppel protein was evaluated using PolyPhen-2. Results We found nine novel SNPs in the leporine PRND gene: c.18A > G, c.76G > C, c.128C > T, c.146C > T, c.315A > G, c.488G > A, c.525G > C, c.544G > A, and c.579A > G. Notably, seven of these PRND SNPs, excluding c.525G > C and c.579A > G, exhibited strong LD values exceeding 0.3. In addition, LD analysis confirmed a robust link between PRNP SNP c.234C > T and PRND SNPs at c.525G > C and c.579A > G. Furthermore, according to PolyPhen-2 and SIFT analyses, the four non-synonymous SNPs were predicted to have deleterious effects on the function or structure of the Doppel protein. However, PANTHER and Missense3D did not indicate such effects. Conclusion In this paper, we have identified novel SNPs in the rabbit PRND gene and predicted their potential detrimental effects on protein function or structure through four non-synonymous SNPs. Additionally, we observed a genetic linkage between SNPs in the PRND and PRNP genes. These findings may provide insights into understanding the characteristics of rabbits as partially resistant species. To the best of our knowledge, this study is the first to genetically characterize PRND SNPs in rabbits.
Collapse
Affiliation(s)
- Min-Ju Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
3
|
Kim DJ, Kim YC, Jeong BH. First report of a novel polymorphism and genetic characteristics of the leporine prion protein ( PRNP) gene. Front Vet Sci 2023; 10:1229369. [PMID: 37808111 PMCID: PMC10556520 DOI: 10.3389/fvets.2023.1229369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) have been reported in a broad spectrum of hosts. The genetic polymorphisms and characteristics of the prion protein (PRNP) gene have a vital impact on the development of TSEs. Notably, natural TSE infection cases have never been reported in rabbits, and genetic variations of the leporine PRNP gene have not been investigated to date. To identify leporine PRNP gene polymorphism, we performed amplicon sequencing in 203 rabbits. We report a novel single nucleotide polymorphism on the leporine PRNP gene. In addition, we performed a comparative analysis of amino acid sequences of prion protein (PrP) across several hosts using ClustalW2. Furthermore, we evaluated the effect of changes of unique leporine PrP amino acids with those conserved among various species using Swiss-Pdb Viewer. Interestingly, we found seven unique leporine amino acids, and the change of unique leporine amino acids with those conserved among other species, including S175N, Q221K, Q221R, A226Y, A230G, and A230S, was predicted to reduce hydrogen bonds in leporine PrP.
Collapse
Affiliation(s)
- Dong-Ju Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
4
|
Artificial Selection Drives SNPs of Olfactory Receptor Genes into Different Working Traits in Labrador Retrievers. Genet Res (Camb) 2022; 2022:8319396. [PMID: 35185392 PMCID: PMC8828343 DOI: 10.1155/2022/8319396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Labs as guide dogs or sniffer dogs in usage have been introduced into China for more than 20 years. These two types of working dogs own blunt or acute olfactory senses, which have been obtained by artificial selection in relatively closed populations. In order to attain stable olfactory attributes and meet use-oriented demands, Chinese breeders keep doing the same artificial selection. Though olfactory behavior is canine genetic behavior, genotypes of OR genes formed by breeding schemes are largely unknown. Here, we characterized 26 SNPs, 2 deletions, and 2 insertions of 7 OR genes between sniffer dogs and guide dogs in order to find out the candidate alleles associated with working specific traits. The results showed that there were candidate functional SNP alleles in one locus that had statistically severely significant differences between the two subpopulations. Furthermore, the levels of polymorphism were not high in all loci and linkage disequilibrium only happened within one OR gene. Hardy–Weinberg equilibrium (HWE) tests showed that there was a higher ratio not in HWE and lower FST within the two working dog populations. We conclude that artificial selection in working capacities has acted on SNP alleles of OR genes in a dog breed and driven the evolution in compliance with people's intentions though the changes are limited in decades of strategic breeding.
Collapse
|
5
|
The First Report of Genetic Polymorphisms of the Equine SPRN Gene in Outbred Horses, Jeju and Halla Horses. Animals (Basel) 2021; 11:ani11092574. [PMID: 34573540 PMCID: PMC8467739 DOI: 10.3390/ani11092574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Prion disease is a fatal neurodegenerative disease caused by the accumulation of pathogenic prion protein (PrPSc) in various mammalian hosts. However, to date, prion disease has not been reported in horses. Since the Sho protein encoded by the shadow of the prion protein gene (SPRN) plays an essential role in the progression of prion diseases, we investigated the genetic characteristics of the equine SPRN gene in horses. We found four single nucleotide polymorphisms (SNPs) of the equine SPRN gene and significant different distributions among three horse breeds including Jeju, Halla and Thoroughbred horses. Although the polymorphisms affect the property of mRNA of the equine SPRN gene, it did not affect the sequence and structure of Sho protein. Since several non-synonymous SNPs of the SPRN gene have been reported in prion diseases-susceptible animals, the absence of non-synonymous SNP of the equine SPRN gene in the horses is noticeable. Abstract Prion disease is a fatal infectious disease caused by the accumulation of pathogenic prion protein (PrPSc) in several mammals. However, to date, prion disease has not been reported in horses. The Sho protein encoded by the shadow of the prion protein gene (SPRN) plays an essential role in the pathomechanism of prion diseases. To date, the only genetic study of the equine SPRN gene has been reported in the inbred horse, Thoroughbred horse. We first discovered four SPRN single nucleotide polymorphisms (SNPs) in 141 Jeju and 88 Halla horses by direct DNA sequencing. In addition, we found that the genotype, allele and haplotype frequencies of these SNPs of Jeju horses were significantly different from those of Halla and Thoroughbred horses, this latter breed is also included in this study. Furthermore, we observed that the minimum free energy and mRNA secondary structure were significantly different according to haplotypes of equine SPRN polymorphisms by the RNAsnp program. Finally, we compared the SNPs in the coding sequence (CDS) of the SPRN gene between horses and prion disease-susceptible species. Notably, prion disease-susceptible animals had polymorphisms that cause amino acid changes in the open reading frame (ORF) of the SPRN gene, while these polymorphisms were not found in horses.
Collapse
|
6
|
Kim YC, Park KJ, Hwang JY, Park HC, Kang HE, Sohn HJ, Jeong BH. In-depth examination of PrP Sc in Holstein cattle carrying the E211K somatic mutation of the bovine prion protein gene (PRNP). Transbound Emerg Dis 2021; 69:e356-e361. [PMID: 34470082 DOI: 10.1111/tbed.14309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022]
Abstract
Prion diseases are transmissible spongiform encephalopathies caused by deleterious prion protein (PrPSc ) derived from normal prion protein (PrPC ), which is encoded by the prion protein gene (PRNP). We performed an in-depth examination to detect PrPSc by using enzyme immunoassay (EIA), real-time quaking-induced conversion reactions (RT-QuIC) and protein misfolding cyclic amplification (PMCA) in nine brain tissues derived from three Holstein cattle carrying the E211K somatic mutation of the bovine PRNP gene. The EIA, RT-QuIC and PMCA analyses were not able to detect the PrPSc band in any tested samples. To the best of our knowledge, this report is the first to describe an in-depth examination of PrPSc in cattle carrying the E211K somatic mutation of the bovine PRNP gene.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyung-Je Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Ji-Yong Hwang
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hoo-Chang Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hae-Eun Kang
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Joo Sohn
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
7
|
Kim HH, Kim YC, Kim K, Kim AD, Jeong BH. Novel Polymorphisms and Genetic Features of the Prion Protein Gene ( PRNP) in Cats, Hosts of Feline Spongiform Encephalopathy. Genes (Basel) 2020; 12:genes12010013. [PMID: 33374431 PMCID: PMC7824082 DOI: 10.3390/genes12010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by vacuolation and gliosis in the brain. Prion diseases have been reported in several mammals, and genetic polymorphisms of the prion protein gene (PRNP) play an essential role in the vulnerability of prion diseases. However, to date, investigations of PRNP polymorphisms are rare in cats, which are the major host of feline spongiform encephalopathy (FSE). Thus, we investigated the genetic polymorphisms of the cat PRNP gene and analyzed the structural characteristics of the PrP of cats compared to those of dog, prion disease-resistant animal. To investigate the genetic variations of the cat PRNP gene in 208 cats, we performed amplicon sequencing and examined the genotype, allele and haplotype frequencies of cat PRNP polymorphisms. We evaluated the influence of cat PRNP polymorphisms using PolyPhen-2, PANTHER, PROVEAN and AMYCO. In addition, we carried out structural analysis of cat PrP according to the allele of nonsynonymous single nucleotide polymorphism (SNP) (c.457G > A, Glu153Lys) using Swiss-PdbViewer. Finally, we compared the structural differences between cat and canine PrPs for SNPs associated with prion disease resistance in dogs. We identified a total of 15 polymorphisms, including 14 novel SNPs and one insertion/deletion polymorphism (InDel). Among them, Glu153Lys was predicted to affect the structural stability and amyloid propensity of cat PrP. In addition, asparagine at codon 166 of cat PrP was predicted to have longer hydrogen bond than aspartic acid at codon 163 of canine PrP. Furthermore, substitution to dog-specific amino acids in cat PrP showed an increase in structural stability. To the best of our knowledge, this is the first study regarding the structural characteristics of cat PRNP gene.
Collapse
Affiliation(s)
- Hyeon-Ho Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea; (H.-H.K.); (Y.-C.K.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea; (H.-H.K.); (Y.-C.K.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Kiwon Kim
- Haemalken Animal Hospital, Yangju, Gyeonggi 11492, Korea;
| | - An-Dang Kim
- Cool-Pet Animal Hospital, Anyang, Gyeonggi 14066, Korea;
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea; (H.-H.K.); (Y.-C.K.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
- Correspondence: ; Tel.: +82-63-900-4040; Fax: +82-63-900-4012
| |
Collapse
|