1
|
Rotti PG, Yi Y, Gasser G, Yuan F, Sun X, Apak-Evans I, Wu P, Liu G, Choi S, Reeves R, Scioneaux AE, Zhang Y, Winter M, Liang B, Cunicelli N, Uc A, Norris AW, Sussel L, Wells KL, Engelhardt JF. CFTR represses a PDX1 axis to govern pancreatic ductal cell fate. iScience 2024; 27:111393. [PMID: 39687022 PMCID: PMC11647141 DOI: 10.1016/j.isci.2024.111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation, acinar atrophy, and ductal hyperplasia drive pancreatic remodeling in newborn cystic fibrosis (CF) ferrets lacking a functional cystic fibrosis conductance regulator (CFTR) channel. These changes are associated with a transient phase of glucose intolerance that involves islet destruction and subsequent regeneration near hyperplastic ducts. The phenotypic changes in CF ductal epithelium and their impact on islet function are unknown. Using bulk RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq), and assay for transposase-accessible chromatin using sequencing (ATAC-seq) on CF ferret models, we demonstrate that ductal CFTR protein constrains PDX1 expression by maintaining PTEN and GSK3β activation. In the absence of CFTR protein, centroacinar cells adopted a bipotent progenitor-like state associated with enhanced WNT/β-Catenin, transforming growth factor β (TGF-β), and AKT signaling. We show that the level of CFTR protein, not its channel function, regulates PDX1 expression. Thus, this study has discovered a cell-autonomous CFTR-dependent mechanism by which CFTR mutations that produced little to no protein could impact pancreatic exocrine/endocrine remodeling in people with CF.
Collapse
Affiliation(s)
| | - Yaling Yi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Grace Gasser
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Idil Apak-Evans
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Peipei Wu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Guangming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Soon Choi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rosie Reeves
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Attilina E. Scioneaux
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael Winter
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bo Liang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan Cunicelli
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Aliye Uc
- Stead Family Department of Pediatrics, Carver College of Medicine, Iowa City, IA, USA
| | - Andrew W. Norris
- Center for Gene Therapy, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lori Sussel
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - Kristen L. Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Lei L, Traore S, Romano Ibarra GS, Karp PH, Rehman T, Meyerholz DK, Zabner J, Stoltz DA, Sinn PL, Welsh MJ, McCray PB, Thornell IM. CFTR-rich ionocytes mediate chloride absorption across airway epithelia. J Clin Invest 2023; 133:e171268. [PMID: 37581935 PMCID: PMC10575720 DOI: 10.1172/jci171268] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
The volume and composition of a thin layer of liquid covering the airway surface defend the lung from inhaled pathogens and debris. Airway epithelia secrete Cl- into the airway surface liquid through cystic fibrosis transmembrane conductance regulator (CFTR) channels, thereby increasing the volume of airway surface liquid. The discovery that pulmonary ionocytes contain high levels of CFTR led us to predict that ionocytes drive secretion. However, we found the opposite. Elevating ionocyte abundance increased liquid absorption, whereas reducing ionocyte abundance increased secretion. In contrast to other airway epithelial cells, ionocytes contained barttin/Cl- channels in their basolateral membrane. Disrupting barttin/Cl- channel function impaired liquid absorption, and overexpressing barttin/Cl- channels increased absorption. Together, apical CFTR and basolateral barttin/Cl- channels provide an electrically conductive pathway for Cl- flow through ionocytes, and the transepithelial voltage generated by apical Na+ channels drives absorption. These findings indicate that ionocytes mediate liquid absorption, and secretory cells mediate liquid secretion. Segregating these counteracting activities to distinct cell types enables epithelia to precisely control the airway surface. Moreover, the divergent role of CFTR in ionocytes and secretory cells suggests that cystic fibrosis disrupts both liquid secretion and absorption.
Collapse
Affiliation(s)
- Lei Lei
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
| | - Soumba Traore
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
| | - Guillermo S. Romano Ibarra
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
| | - Philip H. Karp
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
- Howard Hughes Medical Institute
| | - Tayyab Rehman
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine
| | - Joseph Zabner
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
| | - David A. Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
- Department of Biomedical Engineering
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine
| | - Patrick L. Sinn
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael J. Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
- Howard Hughes Medical Institute
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine
| | - Paul B. McCray
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ian M. Thornell
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
| |
Collapse
|
3
|
Yan Z, Vorhies K, Feng Z, Park SY, Choi SH, Zhang Y, Winter M, Sun X, Engelhardt JF. Recombinant Adeno-Associated Virus-Mediated Editing of the G551D Cystic Fibrosis Transmembrane Conductance Regulator Mutation in Ferret Airway Basal Cells. Hum Gene Ther 2022; 33:1023-1036. [PMID: 35686451 PMCID: PMC9595624 DOI: 10.1089/hum.2022.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/03/2022] [Indexed: 12/30/2022] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), a chronic disease that affects multiple organs, including the lung. We developed a CF ferret model of a scarless G551→D substitution in CFTR (CFTRG551D-KI), enabling approaches to correct this gating mutation in CF airways via gene editing. Homology-directed repair (HDR) was tested in Cas9-expressing CF airway basal cells (Cas9-GKI) from this model, as well as reporter basal cells (Y66S-Cas9-GKI) that express an integrated nonfluorescent Y66S-EGFP (enhanced green fluorescent protein) mutant gene to facilitate rapid assessment of HDR by the restoration of fluorescence. Recombinant adeno-associated virus (rAAV) vectors were used to deliver two DNA templates and sgRNAs for dual-gene editing at the EGFP and CFTR genes, followed by fluorescence-activated cell sorting of EGFPY66S-corrected cells. When gene-edited airway basal cells were polarized at an air-liquid interface, unsorted and EGFPY66S-corrected sorted populations gave rise to 26.0% and 70.4% CFTR-mediated Cl- transport of that observed in non-CF cultures, respectively. The consequences of gene editing at the CFTRG551D locus by HDR and nonhomologous end joining (NHEJ) were assessed by targeted gene next-generation sequencing (NGS) against a specific amplicon. NGS revealed HDR corrections of 3.1% of G551 sequences in the unsorted population of rAAV-infected cells, and 18.4% in the EGFPY66S-corrected cells. However, the largest proportion of sequences had indels surrounding the CRISPR (clustered regularly interspaced short palindromic repeats) cut site, demonstrating that NHEJ was the dominant repair pathway. This approach to simultaneously coedit at two genomic loci using rAAV may have utility as a model system for optimizing gene-editing efficiencies in proliferating airway basal cells through the modulation of DNA repair pathways in favor of HDR.
Collapse
Affiliation(s)
- Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Kai Vorhies
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Zehua Feng
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Soo Yeun Park
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Soon H. Choi
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Michael Winter
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Anticipating New Treatments for Cystic Fibrosis: A Global Survey of Researchers. J Clin Med 2022; 11:jcm11051283. [PMID: 35268374 PMCID: PMC8911007 DOI: 10.3390/jcm11051283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis is a life-threatening disease that affects at least 100,000 people worldwide. It is caused by a defect in the cystic fibrosis transmembrane regulator (CFTR) gene and presently, 360 CFTR-causing mutations have been identified. Since the discovery of the CFTR gene, the expectation of developing treatments that can substantially increase the quality of life or even cure cystic fibrosis patients is growing. Yet, it is still uncertain today which developing treatments will be successful against cystic fibrosis. This study addresses this gap by assessing the opinions of over 524 cystic fibrosis researchers who participated in a global web-based survey. For most respondents, CFTR modulator therapies are the most likely to succeed in treating cystic fibrosis in the next 15 years, especially through the use of CFTR modulator combinations. Most respondents also believe that fixing or replacing the CFTR gene will lead to a cure for cystic fibrosis within 15 years, with CRISPR-Cas9 being the most likely genetic tool for this purpose.
Collapse
|
5
|
Ma L, Wu D. MicroRNA-383-5p regulates osteogenic differentiation of human periodontal ligament stem cells by targeting histone deacetylase 9. Arch Oral Biol 2021; 129:105166. [PMID: 34118749 DOI: 10.1016/j.archoralbio.2021.105166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Human periodontal ligament stem cells (hPDLSCs) play an important role in regenerative engineering technology for periodontal therapy. The mechanism of microRNA (miR)-383-5p in osteogenic differentiation needs further exploration. This study aimed at investigating the potential role of miR-383-5p in the osteogenic differentiation of hPDLSCs. METHODS Osteogenic differentiation of hPDLSCs was induced by osteoblastinducing media and evaluated by Alizarin Red staining and Alkaline phosphatase staining. To examine the role of miR-383-5p in osteogenic differentiation, miR-383-5p mimic or inhibitor and histone deacetylase (HDAC) 9 overexpression plasmid or siRNA-HDAC9 were co-transfected into hPDLSCs. qRT-PCR and Western blot were applied for detection of mRNA and protein levels. RESULTS During the osteogenic differentiation of hPDLSCs, miR-383-5p expression was gradually up-regulated, while HDAC9 mRNA level was down-regulated. HDAC9 overexpression suppressed Alkaline phosphatase activity, mineral node formation and the expressions of osteogenic markers including Runx family transcription factor 2 (RUNX2), osteocalcin and Smad family member 4 (Smad4) in the differentiated hPDLSCs, while siHDAC9 exerted opposite effects on osteogenic differentiation. The Alkaline phosphatase activity, mineral node formation and the expressions of RUNX2, osteocalcin and Smad4 of the differentiated hPDLSCs were regulated by miR-383-5p/HDAC9 axis. The miR-383-5p/HDAC9 axis effectively regulated the expressions of osteogenic markers during the differentiation of hPDLSCs. CONCLUSION MiR-383-5p overexpression facilitated the osteogenic differentiation of hPDLSCs via inhibiting HDAC9 expression.
Collapse
Affiliation(s)
- Lan Ma
- Department of Stomatology, Jingmen No.1 People's Hospital, China
| | - Di Wu
- Department of Stomatology, Jingmen No.1 People's Hospital, China.
| |
Collapse
|