1
|
Salonia F, Ciacciulli A, Pappalardo HD, Poles L, Pindo M, Larger S, Caruso P, Caruso M, Licciardello C. A dual sgRNA-directed CRISPR/Cas9 construct for editing the fruit-specific β-cyclase 2 gene in pigmented citrus fruits. FRONTIERS IN PLANT SCIENCE 2022; 13:975917. [PMID: 36582639 PMCID: PMC9792771 DOI: 10.3389/fpls.2022.975917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
CRISPR/Cas9 genome editing is a modern biotechnological approach used to improve plant varieties, modifying only one or a few traits of a specific variety. However, this technology cannot be easily used to improve fruit quality traits in citrus, due to the lack of knowledge of key genes, long juvenile stage, and the difficulty regenerating whole plants of specific varieties. Here, we introduce a genome editing approach with the aim of producing citrus plantlets whose fruits contain both lycopene and anthocyanins. Our method employs a dual single guide RNA (sgRNA)-directed genome editing approach to knockout the fruit-specific β-cyclase 2 gene, responsible for the conversion of lycopene to beta-carotene. The gene is targeted by two sgRNAs simultaneously to create a large deletion, as well as to induce point mutations in both sgRNA targets. The EHA105 strain of Agrobacterium tumefaciens was used to transform five different anthocyanin-pigmented sweet oranges, belonging to the Tarocco and Sanguigno varietal groups, and 'Carrizo' citrange, a citrus rootstock as a model for citrus transformation. Among 58 plantlets sequenced in the target region, 86% of them were successfully edited. The most frequent mutations were deletions (from -1 to -74 nucleotides) and insertions (+1 nucleotide). Moreover, a novel event was identified in six plantlets, consisting of the inversion of the region between the two sgRNAs. For 20 plantlets in which a single mutation occurred, we excluded chimeric events. Plantlets did not show an altered phenotype in vegetative tissues. To the best of our knowledge, this work represents the first example of the use of a genome editing approach to potentially improve qualitative traits of citrus fruit.
Collapse
Affiliation(s)
- Fabrizio Salonia
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Angelo Ciacciulli
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Helena Domenica Pappalardo
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Lara Poles
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Trento with S. Michele all’ Adige, Trento, Italy
| | - Simone Larger
- Research and Innovation Centre, Trento with S. Michele all’ Adige, Trento, Italy
| | - Paola Caruso
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Marco Caruso
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Concetta Licciardello
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| |
Collapse
|
2
|
Song H, Liu J, Chen C, Zhang Y, Tang W, Yang W, Chen H, Li M, Jiang G, Sun S, Li J, Tu M, Wang L, Xu Z, Gong R, Chen D. Down-regulation of NCED leads to the accumulation of carotenoids in the flesh of F 1 generation of peach hybrid. FRONTIERS IN PLANT SCIENCE 2022; 13:1055779. [PMID: 36407629 PMCID: PMC9669654 DOI: 10.3389/fpls.2022.1055779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Flesh color is an important target trait in peach [Prunus persica (L.) Batsch] breeding. In this study, two white-fleshed peach cultivars were crossed [Changsong Whitepeach (WP-1) × 'Xiacui'], and their hybrid F1 generation showed color segregation of white flesh (BF1) and yellow flesh (HF1). Metabolome analysis revealed that the flesh color segregation in the hybrid F1 generation was related to the carotenoid content. The decrease in β-carotene and β-cryptoxanthin in BF1 flesh and increase in β-cryptoxanthin oleate, rubixanthin caprate, rubixanthin laurate and zeaxanthin dipalmitate in HF1 flesh contributed to their difference in carotenoid accumulation. Transcriptome analysis demonstrated that compared with BF1, HF1 showed significant up-regulation and down-regulation of ZEP and CCD8 at the core-hardening stage, respectively, while significant down-regulation of NCED in the whole fruit development stage. The down-regulation of NCED might inhibit the breakdown of the violaxanthin and its upstream substances and further promote the accumulation of carotenoids, resulting in yellow flesh. Therefore, NCED may be a key gene controlling the fruit color traits of peach. In this study, targeted metabolomics and transcriptomics were used to jointly explore the mechanism controlling the fruit color of peach, which may help to identify the key genes for the differences in carotenoid accumulation and provide a reference for the breeding of yellow-fleshed peach.
Collapse
Affiliation(s)
- Haiyan Song
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Junhong Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Chaoqun Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Wenjing Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Wenlong Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Hongxu Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Guoliang Jiang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Shuxia Sun
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jing Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Meiyan Tu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lingli Wang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zihong Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Ronggao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Chen
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
3
|
Ren Q, Zhen X, Gao H, Liang Y, Li H, Zhao J, Yin M, Han Y, Zhang B. Integrated Metabolomic and Transcriptomic Analyses Reveal the Basis for Carotenoid Biosynthesis in Sweet Potato ( Ipomoea batatas (L.) Lam.) Storage Roots. Metabolites 2022; 12:1010. [PMID: 36355093 PMCID: PMC9699360 DOI: 10.3390/metabo12111010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/11/2024] Open
Abstract
Carotenoids are important compounds of quality and coloration within sweet potato storage roots, but the mechanisms that govern the accumulation of these carotenoids remain poorly understood. In this study, metabolomic and transcriptomic analyses of carotenoids were performed using young storage roots (S2) and old storage roots (S4) from white-fleshed (variety S19) and yellow-fleshed (variety BS) sweet potato types. S19 storage roots exhibited significantly lower total carotenoid levels relative to BS storage roots, and different numbers of carotenoid types were detected in the BS-S2, BS-S4, S19-S2, and S19-S4 samples. β-cryptoxanthin was identified as a potential key driver of differences in root coloration between the S19 and BS types. Combined transcriptomic and metabolomic analyses revealed significant co-annotation of the carotenoid and abscisic acid (ABA) metabolic pathways, PSY (phytoene synthase), CHYB (β-carotene 3-hydroxylase), ZEP (zeaxanthin epoxidase), NCED3 (9-cis-epoxycarotenoid dioxygenase 3), ABA2 (xanthoxin dehydrogenase), and CYP707A (abscisic acid 8'-hydroxylase) genes were found to be closely associated with carotenoid and ABA content in these sweet potato storage roots. The expression patterns of the transcription factors OFP and FAR1 were associated with the ABA content in these two sweet potato types. Together, these results provide a valuable foundation for understanding the mechanisms governing carotenoid biosynthesis in storage roots, and offer a theoretical basis for sweet potato breeding and management.
Collapse
Affiliation(s)
- Qingming Ren
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaoxi Zhen
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Jinzhong 030801, China
| | - Huiyu Gao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yinpei Liang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Jinzhong 030801, China
| | - Hongying Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Jinzhong 030801, China
| | - Juan Zhao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Meiqiang Yin
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Jinzhong 030801, China
| | - Bin Zhang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Jinzhong 030801, China
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
4
|
Zacarías-García J, Cronje PJ, Diretto G, Zacarías L, Rodrigo MJ. A comprehensive analysis of carotenoids metabolism in two red-fleshed mutants of Navel and Valencia sweet oranges ( Citrus sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:1034204. [PMID: 36330241 PMCID: PMC9623303 DOI: 10.3389/fpls.2022.1034204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Kirkwood Navel and Ruby Valencia are two spontaneous bud mutations of the respective parental lines of sweet orange (Citrus sinensis) Palmer Navel and Olinda Valencia, showing an atypical red pigmentation of the pulp. These red-fleshed varieties are commercially available and highly attractive for consumers but their carotenoid metabolism and the basis of the mutation have not been investigated. The red colour of Kirkwood and Ruby pulp was observed from the very early stages of fruit development until full maturity and associated with an altered carotenoid profiling. The red-fleshed varieties accumulated from 6- up to 1000-times more total carotenoids compared to the standard oranges. Specifically, the pulp of Kirkwood and Ruby accumulated large amounts of phytoene and phytofluene, and moderate contents of lycopene. Moreover, the red-fleshed oranges contained other unusual carotenes as δ-carotene, and lower concentrations of downstream products such as β,β-xanthophylls, abscisic acid (ABA) and ABA-glucosyl ester. This peculiar profile was associated with chromoplasts with lycopene crystalloid structures and round vesicles likely containing colourless carotenes. The flavedo and leaves of Kirkwood and Ruby showed minor changes in carotenoids, mainly limited to higher levels of phytoene. The carotenoid composition in Kirkwood and Ruby fruits was not explained by differences in the transcriptional profile of 26 genes related to carotenoid metabolism, covering the main steps of biosynthesis, catabolism and other processes related to carotenoid accumulation. Moreover, sequence analysis of the lycopene cyclase genes revealed no alterations in those of the red-fleshed oranges compared to the genes of the standard varieties. A striking event observed in Kirkwood and Ruby trees was the reddish coloration of the inner side of the bark tissue, with larger amounts of phytoene, accumulation of lycopene and lower ABA content. These observation lead to the conclusion that the mutation is not only manifested in fruit, affecting other carotenogenic tissues of the mutant plants, but with different consequences in the carotenoid profile. Overall, the carotenoid composition in the red-fleshed mutants suggests a partial blockage of the lycopene β-cyclization in the carotenoid pathway, rendering a high accumulation of carotenes upstream lycopene and a reduced flow to downstream xanthophylls and ABA.
Collapse
Affiliation(s)
- Jaime Zacarías-García
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Paul J. Cronje
- Citrus Research International (CRI), Department of Horticultural Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Biotechnology Laboratory, Casaccia Research Center, Roma, Italy
| | - Lorenzo Zacarías
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - María Jesús Rodrigo
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
5
|
Borredá C, Perez-Roman E, Talon M, Terol J. Comparative transcriptomics of wild and commercial Citrus during early ripening reveals how domestication shaped fruit gene expression. BMC PLANT BIOLOGY 2022; 22:123. [PMID: 35300613 PMCID: PMC8928680 DOI: 10.1186/s12870-022-03509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/03/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Interspecific hybridizations and admixtures were key in Citrus domestication, but very little is known about their impact at the transcriptomic level. To determine the effects of genome introgressions on gene expression, the transcriptomes of the pulp and flavedo of three pure species (citron, pure mandarin and pummelo) and four derived domesticated genetic admixtures (sour orange, sweet orange, lemon and domesticated mandarin) have been analyzed at color break. RESULTS Many genes involved in relevant physiological processes for domestication, such sugar/acid metabolism and carotenoid/flavonoid synthesis, were differentially expressed among samples. In the low-sugar, highly acidic species lemon and citron, many genes involved in sugar metabolism, the TCA cycle and GABA shunt displayed a reduced expression, while the P-type ATPase CitPH5 and most subunits of the vacuolar ATPase were overexpressed. The red-colored species and admixtures were generally characterized by the overexpression in the flavedo of specific pivotal genes involved in the carotenoid biosynthesis, including phytoene synthase, ζ-carotene desaturase, β-lycopene cyclase and CCD4b, a carotenoid cleavage dioxygenase. The expression patterns of many genes involved in flavonoid modifications, especially the flavonoid and phenylpropanoid O-methyltransferases showed extreme diversity. However, the most noticeable differential expression was shown by a chalcone synthase gene, which catalyzes a key step in the biosynthesis of flavonoids. This chalcone synthase was exclusively expressed in mandarins and their admixed species, which only expressed the mandarin allele. In addition, comparisons between wild and domesticated mandarins revealed that the major differences between their transcriptomes concentrate in the admixed regions. CONCLUSION In this work we present a first study providing broad evidence that the genome introgressions that took place during citrus domestication largely shaped gene expression in their fruits.
Collapse
Affiliation(s)
- Carles Borredá
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Estela Perez-Roman
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.
| |
Collapse
|