1
|
Skorupski J, Brandes F, Seebass C, Festl W, Śmietana P, Balacco J, Jain N, Tilley T, Abueg L, Wood J, Sims Y, Formenti G, Fedrigo O, Jarvis ED. Prioritizing Endangered Species in Genome Sequencing: Conservation Genomics in Action with the First Platinum-Standard Reference-Quality Genome of the Critically Endangered European Mink Mustela lutreola L., 1761. Int J Mol Sci 2023; 24:14816. [PMID: 37834264 PMCID: PMC10573602 DOI: 10.3390/ijms241914816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The European mink Mustela lutreola (Mustelidae) ranks among the most endangered mammalian species globally, experiencing a rapid and severe decline in population size, density, and distribution. Given the critical need for effective conservation strategies, understanding its genomic characteristics becomes paramount. To address this challenge, the platinum-quality, chromosome-level reference genome assembly for the European mink was successfully generated under the project of the European Mink Centre consortium. Leveraging PacBio HiFi long reads, we obtained a 2586.3 Mbp genome comprising 25 scaffolds, with an N50 length of 154.1 Mbp. Through Hi-C data, we clustered and ordered the majority of the assembly (>99.9%) into 20 chromosomal pseudomolecules, including heterosomes, ranging from 6.8 to 290.1 Mbp. The newly sequenced genome displays a GC base content of 41.9%. Additionally, we successfully assembled the complete mitochondrial genome, spanning 16.6 kbp in length. The assembly achieved a BUSCO (Benchmarking Universal Single-Copy Orthologs) completeness score of 98.2%. This high-quality reference genome serves as a valuable genomic resource for future population genomics studies concerning the European mink and related taxa. Furthermore, the newly assembled genome holds significant potential in addressing key conservation challenges faced by M. lutreola. Its applications encompass potential revision of management units, assessment of captive breeding impacts, resolution of phylogeographic questions, and facilitation of monitoring and evaluating the efficiency and effectiveness of dedicated conservation strategies for the European mink. This species serves as an example that highlights the paramount importance of prioritizing endangered species in genome sequencing projects due to the race against time, which necessitates the comprehensive exploration and characterization of their genomic resources before their populations face extinction.
Collapse
Affiliation(s)
- Jakub Skorupski
- Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13 St., 71-415 Szczecin, Poland
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
| | - Florian Brandes
- Wildtier- und Artenschutzstation e.V., Hohe Warte 1, 31553 Sachsenhagen, Germany
| | | | - Wolfgang Festl
- EuroNerz e.V., Kleine Gildewart 3, 49074 Osnabrück, Germany
| | - Przemysław Śmietana
- Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13 St., 71-415 Szczecin, Poland
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
| | - Jennifer Balacco
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Nivesh Jain
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Tatiana Tilley
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Linelle Abueg
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Jonathan Wood
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Ying Sims
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Erich D. Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| |
Collapse
|
2
|
Balmori‐de la Puente A, Escoda L, Fernández‐González Á, Menéndez‐Pérez D, González‐Esteban J, Castresana J. Evaluating the use of non-invasive hair sampling and ddRAD to characterize populations of endangered species: Application to a peripheral population of the European mink. Ecol Evol 2023; 13:e10530. [PMID: 37727778 PMCID: PMC10506391 DOI: 10.1002/ece3.10530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
The application of next-generation sequencing (NGS) to non-invasive samples is one of the most promising methods in conservation genomics, but these types of samples present significant challenges for NGS. The European mink (Mustela lutreola) is critically endangered throughout its range. However, important aspects such as census size and inbreeding remain still unknown in many populations, so it is crucial to develop new methods to monitor this species. In this work, we placed hair tubes along riverbanks in a border area of the Iberian population, which allowed the genetic identification of 76 European mink hair samples. We then applied a reduced representation genomic sequencing (ddRAD) technique to a subset of these samples to test whether we could extract sufficient genomic information from them. We show that several problems with the DNA, including contamination, fragmentation, oxidation, and possibly sample mixing, affected the samples. Using various bioinformatic techniques to reduce these problems, we were able to unambiguously genotype 19 hair samples belonging to six individuals. This small number of individuals showed that the demographic status of the species in this peripheral population is worse than expected. The data obtained also allowed us to perform preliminary analyses of relatedness and inbreeding. Although further improvements in sampling and analysis are needed, the application of the ddRAD technique to non-invasively obtained hairs represents a significant advance in the genomic study of endangered species.
Collapse
Affiliation(s)
| | - Lídia Escoda
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | | | | | | | - Jose Castresana
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| |
Collapse
|
3
|
Baeza JA, Macdonald-Shedd A, Latorre-Cárdenas MC, Griffin E, Gutiérrez-Rodríguez C. The first genomic resource for the ‘near threatened’ Neotropical otter Lontra longicaudis (Carnivora: Mustelidae): mitochondrial genome characterisation and insights into phylomitogenomic relationships in the family Mustelidae. J NAT HIST 2023. [DOI: 10.1080/00222933.2023.2186809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Cryobanking European Mink (Mustela lutreola) Mesenchymal Stem Cells and Oocytes. Int J Mol Sci 2022; 23:ijms23169319. [PMID: 36012583 PMCID: PMC9408899 DOI: 10.3390/ijms23169319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The European mink (Mustela lutreola) is one of Europe’s most endangered species, and it is on the brink of extinction in the Iberian Peninsula. The species’ precarious situation requires the application of new ex situ conservation methodologies that complement the existing ex situ and in situ conservation measures. Here, we report for the first time the establishment of a biobank for European mink mesenchymal stem cells (emMSC) and oocytes from specimens found dead in the Iberian Peninsula, either free or in captivity. New emMSC lines were isolated from different tissues: bone marrow (emBM-MSC), oral mucosa (emOM-MSc), dermal skin (emDS-MSC), oviduct (emO-MSc), endometrium (emE-MSC), testicular (emT-MSC), and adipose tissue from two different adipose depots: subcutaneous (emSCA-MSC) and ovarian (emOA-MSC). All eight emMSC lines showed plastic adhesion, a detectable expression of characteristic markers of MSCs, and, when cultured under osteogenic and adipogenic conditions, differentiation capacity to these lineages. Additionally, we were able to keep 227 Cumulus-oocyte complexes (COCs) in the biobank, 97 of which are grade I or II. The European mink MSC and oocyte biobank will allow for the conservation of the species’ genetic variability, the application of assisted reproduction techniques, and the development of in vitro models for studying the molecular mechanisms of infectious diseases that threaten the species’ precarious situation.
Collapse
|
5
|
Skorupski J. Characterisation of the Complete Mitochondrial Genome of Critically Endangered Mustela lutreola (Carnivora: Mustelidae) and Its Phylogenetic and Conservation Implications. Genes (Basel) 2022; 13:genes13010125. [PMID: 35052465 PMCID: PMC8774856 DOI: 10.3390/genes13010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, a complete mitochondrial genome of the critically endangered European mink Mustela lutreola L., 1761 is reported. The mitogenome was 16,504 bp in length and encoded the typical 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes, and harboured a putative control region. The A+T content of the entire genome was 60.06% (A > T > C > G), and the AT-skew and GC-skew were 0.093 and −0.308, respectively. The encoding-strand identity of genes and their order were consistent with a collinear gene order characteristic for vertebrate mitogenomes. The start codons of all protein-coding genes were the typical ATN. In eight cases, they were ended by complete stop codons, while five had incomplete termination codons (TA or T). All tRNAs had a typical cloverleaf secondary structure, except tRNASer(AGC) and tRNALys, which lacked the DHU stem and had reduced DHU loop, respectively. Both rRNAs were capable of folding into complex secondary structures, containing unmatched base pairs. Eighty-one single nucleotide variants (substitutions and indels) were identified. Comparative interspecies analyses confirmed the close phylogenetic relationship of the European mink to the so-called ferret group, clustering the European polecat, the steppe polecat and the black-footed ferret. The obtained results are expected to provide useful molecular data, informing and supporting effective conservation measures to save M. lutreola.
Collapse
Affiliation(s)
- Jakub Skorupski
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 St., 70-383 Szczecin, Poland; ; Tel.: +48-91-444-16-85
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
- The European Mink Centre, 71-415 Szczecin, Poland
| |
Collapse
|
6
|
Skorupski J, Michaux J, Śmietana P. A Meta-Analytical Investigation of the Gap between Measured and Predicted Inter-Population Genetic Diversity in Species of High Conservation Concern-The Case of the Critically Endangered European Mink Mustela lutreola L., 1761. Genes (Basel) 2021; 12:genes12101555. [PMID: 34680950 PMCID: PMC8535868 DOI: 10.3390/genes12101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/05/2022] Open
Abstract
Although properly designed sampling in population genetic studies is of key importance for planning evidence-informed conservation measures, sampling strategies are rarely discussed. This is the case for the European mink Mustela lutreola, a critically endangered species. In order to address this problem, a meta-analysis aiming to examine the completeness of mtDNA haplotype sampling in recent studies of M. lutreola inter-population genetic diversity was conducted. The analysis was performed using the sample-size-based rarefaction and extrapolation sampling curve method for three populations—the Northeastern (Russia, Belarus and Estonia), the Western (France and Spain), and the Southeastern (Romania). The extrapolated values of the Shannon–Wiener index were determined, assuming full sample coverage. The gap between the measured and predicted inter-population genetic diversity was estimated, indicating that the identified level of sample coverage was the lowest for the NE population (87%), followed by the SE population (96%) and the W population (99%). A guide for sampling design and accounting for sampling uncertainty in future population genetic studies on European mink is provided. The relatively low sample coverage for the Russian population clearly indicates an urgent need to take conservation measures for European mink in this country.
Collapse
Affiliation(s)
- Jakub Skorupski
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 St., 70-383 Szczecin, Poland;
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
- European Mink Centre, 5 Lipca 45 St., 70-374 Szczecin, Poland
- Correspondence:
| | - Johan Michaux
- Laboratoire de Génétique de la Conservation, Institut de Botanique (Bat. 22), Université de Liège (Sart Tilman), Chemin de la Vallée 4, B4000 Liège, Belgium;
- Animal, Santé, Territoire, Risque Environnement-Unité Mixe de Recherche 117 (ASTRE), Université de Montpellier, Centre International de Recherche Agronomique pour le Développement (CIRAD), Institut National de la Recherche Agronomique, 34398 Montpellier, France
| | - Przemysław Śmietana
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 St., 70-383 Szczecin, Poland;
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
| |
Collapse
|
7
|
Devaux CA, Pinault L, Delerce J, Raoult D, Levasseur A, Frutos R. Spread of Mink SARS-CoV-2 Variants in Humans: A Model of Sarbecovirus Interspecies Evolution. Front Microbiol 2021; 12:675528. [PMID: 34616371 PMCID: PMC8488371 DOI: 10.3389/fmicb.2021.675528] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid spread of SARS-CoV-2 variants has quickly spanned doubts and the fear about their ability escape vaccine protection. Some of these variants initially identified in caged were also found in humans. The claim that these variants exhibited lower susceptibility to antibody neutralization led to the slaughter of 17 million minks in Denmark. SARS-CoV-2 prevalence tests led to the discovery of infected farmed minks worldwide. In this study, we revisit the issue of the circulation of SARS-CoV-2 variants in minks as a model of sarbecovirus interspecies evolution by: (1) comparing human and mink angiotensin I converting enzyme 2 (ACE2) and neuropilin 1 (NRP-1) receptors; (2) comparing SARS-CoV-2 sequences from humans and minks; (3) analyzing the impact of mutations on the 3D structure of the spike protein; and (4) predicting linear epitope targets for immune response. Mink-selected SARS-CoV-2 variants carrying the Y453F/D614G mutations display an increased affinity for human ACE2 and can escape neutralization by one monoclonal antibody. However, they are unlikely to lose most of the major epitopes predicted to be targets for neutralizing antibodies. We discuss the consequences of these results for the rational use of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
- Fondation IHU–Méditerranée Infection, Marseille, France
| | - Lucile Pinault
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | - Jérémy Delerce
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | - Anthony Levasseur
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | | |
Collapse
|
8
|
Fenollar F, Mediannikov O, Maurin M, Devaux C, Colson P, Levasseur A, Fournier PE, Raoult D. Mink, SARS-CoV-2, and the Human-Animal Interface. Front Microbiol 2021; 12:663815. [PMID: 33868218 PMCID: PMC8047314 DOI: 10.3389/fmicb.2021.663815] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 01/05/2023] Open
Abstract
Mink are small carnivores of the Mustelidae family. The American mink is the most common and was imported to Europe, Asia, and Latin America for breeding, as its fur is very popular. Denmark, the Netherlands, and China are the biggest producers of mink. Mink farms with a high population density in very small areas and a low level of genetic heterogeneity are places conducive to contagion. The mink’s receptor for SARS-CoV-2 is very similar to that of humans. Experimental models have shown the susceptibility of the ferret, another mustelid, to become infected with SARS-CoV-2 and to transmit it to other ferrets. On April 23, 2020, for the first time, an outbreak of SARS-CoV-2 in a mink farm was reported in the Netherlands. Since then, COVID-19 has reached numerous mink farms in the Netherlands, Denmark, United States, France, Greece, Italy, Spain, Sweden, Poland, Lithuania, and Canada. Not only do mink become infected from each other, but also they are capable of infecting humans, including with virus variants that have mutated in mink. Human infection with variant mink viruses with spike mutations led to the culling in Denmark of all mink in the country. Several animals can be infected with SARS-CoV-2. However, anthropo-zoonotic outbreaks have only been reported in mink farms. The rapid spread of SARS-CoV-2 in mink farms raises questions regarding their potential role at the onset of the pandemic and the impact of mutants on viral fitness, contagiousness, pathogenicity, re-infections with different mutants, immunotherapy, and vaccine efficacy.
Collapse
Affiliation(s)
- Florence Fenollar
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, SSA, VITROME, Aix Marseille University, Marseille, France
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
| | - Max Maurin
- CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, Université Grenoble Alpes, Grenoble, France
| | - Christian Devaux
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
| | - Philippe Colson
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
| | - Anthony Levasseur
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
| | - Pierre-Edouard Fournier
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, SSA, VITROME, Aix Marseille University, Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
| |
Collapse
|