1
|
Domrazek K, Jurka P. Application of Next-Generation Sequencing (NGS) Techniques for Selected Companion Animals. Animals (Basel) 2024; 14:1578. [PMID: 38891625 PMCID: PMC11171117 DOI: 10.3390/ani14111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Next-Generation Sequencing (NGS) techniques have revolutionized veterinary medicine for cats and dogs, offering insights across various domains. In veterinary parasitology, NGS enables comprehensive profiling of parasite populations, aiding in understanding transmission dynamics and drug resistance mechanisms. In infectious diseases, NGS facilitates rapid pathogen identification, characterization of virulence factors, and tracking of outbreaks. Moreover, NGS sheds light on metabolic processes by elucidating gene expression patterns and metabolic pathways, essential for diagnosing metabolic disorders and designing tailored treatments. In autoimmune diseases, NGS helps identify genetic predispositions and molecular mechanisms underlying immune dysregulation. Veterinary oncology benefits from NGS through personalized tumor profiling, mutation analysis, and identification of therapeutic targets, fostering precision medicine approaches. Additionally, NGS plays a pivotal role in veterinary genetics, unraveling the genetic basis of inherited diseases and facilitating breeding programs for healthier animals. Physiological investigations leverage NGS to explore complex biological systems, unraveling gene-environment interactions and molecular pathways governing health and disease. Application of NGS in treatment planning enhances precision and efficacy by enabling personalized therapeutic strategies tailored to individual animals and their diseases, ultimately advancing veterinary care for companion animals.
Collapse
Affiliation(s)
- Kinga Domrazek
- Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | | |
Collapse
|
2
|
Gand M, Navickaite I, Bartsch LJ, Grützke J, Overballe-Petersen S, Rasmussen A, Otani S, Michelacci V, Matamoros BR, González-Zorn B, Brouwer MSM, Di Marcantonio L, Bloemen B, Vanneste K, Roosens NHCJ, AbuOun M, De Keersmaecker SCJ. Towards facilitated interpretation of shotgun metagenomics long-read sequencing data analyzed with KMA for the detection of bacterial pathogens and their antimicrobial resistance genes. Front Microbiol 2024; 15:1336532. [PMID: 38659981 PMCID: PMC11042533 DOI: 10.3389/fmicb.2024.1336532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/29/2024] [Indexed: 04/26/2024] Open
Abstract
Metagenomic sequencing is a promising method that has the potential to revolutionize the world of pathogen detection and antimicrobial resistance (AMR) surveillance in food-producing environments. However, the analysis of the huge amount of data obtained requires performant bioinformatics tools and databases, with intuitive and straightforward interpretation. In this study, based on long-read metagenomics data of chicken fecal samples with a spike-in mock community, we proposed confidence levels for taxonomic identification and AMR gene detection, with interpretation guidelines, to help with the analysis of the output data generated by KMA, a popular k-mer read alignment tool. Additionally, we demonstrated that the completeness and diversity of the genomes present in the reference databases are key parameters for accurate and easy interpretation of the sequencing data. Finally, we explored whether KMA, in a two-step procedure, can be used to link the detected AMR genes to their bacterial host chromosome, both detected within the same long-reads. The confidence levels were successfully tested on 28 metagenomics datasets which were obtained with sequencing of real and spiked samples from fecal (chicken, pig, and buffalo) or food (minced beef and food enzyme products) origin. The methodology proposed in this study will facilitate the analysis of metagenomics sequencing datasets for KMA users. Ultimately, this will contribute to improvements in the rapid diagnosis and surveillance of pathogens and AMR genes in food-producing environments, as prioritized by the EU.
Collapse
Affiliation(s)
- Mathieu Gand
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Indre Navickaite
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Lee-Julia Bartsch
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Josephine Grützke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Astrid Rasmussen
- Bacterial Reference Center, Statens Serum Institute, Copenhagen, Denmark
| | - Saria Otani
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valeria Michelacci
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Bruno González-Zorn
- Department of Animal Health, Complutense University of Madrid, Madrid, Spain
| | - Michael S. M. Brouwer
- Wageningen Bioveterinary Research Part of Wageningen University and Research, Lelystad, Netherlands
| | - Lisa Di Marcantonio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Bram Bloemen
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | | |
Collapse
|
3
|
He H, Li X, Li J, Ning Y, Luo J, Shi H. A novel regulatory sex-skewing method that inhibits testicular DPY30 expression to increase female rate of dairy goat offspring. J Anim Sci 2024; 102:skad422. [PMID: 38167777 PMCID: PMC10998464 DOI: 10.1093/jas/skad422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
The demand for goat milk products has increased exponentially with the growth of the global population. The shortage of dairy products will be addressed extraordinarily by manipulating the female rate of goat offspring to expand the goat population and goat milk yield. No studies have reported bioinformatic analyses of X- and Y-bearing sperm of dairy goats, although this will contribute to exploring novel and applied sex-skewing technologies. Regulatory subunit of the histone methyltransferase complex (DPY30) was determined to be the key differentially expressed protein (DEP) among 15 DEPs identified in the present study. The spatiotemporal expression of DPY30 strongly suggested a functional involvement of the protein in spermatogenesis. DPY30 promoted meiosis via upregulating SYCP3, which played a crucial role in mediating sex ratio skewing in goats. Although DPY30 suppressed the self-renewal of spermatogonia stem cells through AKT/PLZF, DPY30 inhibition in the testis did not induce testicular dysgenesis. Based on the biosafety assessment in mice testes, lentivirus-mediated DPY30 knockdown in bucks' testes increased X-bearing sperm proportion and female kids' rate (22.8 percentage points) without affecting sperm quality, pregnancy rate, and kidding rate. This study provides the first evidence of the DEGs in the sexed sperm of dairy goats. DPY30 inhibition in the testes of bucks increased the female kids' rate without influencing reproductive performance. The present study provides evidence for expanding the female dairy goat population to address the concern of dairy product shortage.
Collapse
Affiliation(s)
- Huanshan He
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Jintao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Yong Ning
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Jun Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| |
Collapse
|
4
|
Lamb HJ, Nguyen LT, Copley JP, Engle BN, Hayes BJ, Ross EM. Imputation strategies for genomic prediction using nanopore sequencing. BMC Biol 2023; 21:286. [PMID: 38066581 PMCID: PMC10709982 DOI: 10.1186/s12915-023-01782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Genomic prediction describes the use of SNP genotypes to predict complex traits and has been widely applied in humans and agricultural species. Genotyping-by-sequencing, a method which uses low-coverage sequence data paired with genotype imputation, is becoming an increasingly popular SNP genotyping method for genomic prediction. The development of Oxford Nanopore Technologies' (ONT) MinION sequencer has now made genotyping-by-sequencing portable and rapid. Here we evaluate the speed and accuracy of genomic predictions using low-coverage ONT sequence data in a population of cattle using four imputation approaches. We also investigate the effect of SNP reference panel size on imputation performance. RESULTS SNP array genotypes and ONT sequence data for 62 beef heifers were used to calculate genomic estimated breeding values (GEBVs) from 641 k SNP for four traits. GEBV accuracy was much higher when genome-wide flanking SNP from sequence data were used to help impute the 641 k panel used for genomic predictions. Using the imputation package QUILT, correlations between ONT and low-density SNP array genomic breeding values were greater than 0.91 and up to 0.97 for sequencing coverages as low as 0.1 × using a reference panel of 48 million SNP. Imputation time was significantly reduced by decreasing the number of flanking sequence SNP used in imputation for all methods. When compared to high-density SNP arrays, genotyping accuracy and genomic breeding value correlations at 0.5 × coverage were also found to be higher than those imputed from low-density arrays. CONCLUSIONS Here we demonstrated accurate genomic prediction is possible with ONT sequence data from sequencing coverages as low as 0.1 × , and imputation time can be as short as 10 min per sample. We also demonstrate that in this population, genotyping-by-sequencing at 0.1 × coverage can be more accurate than imputation from low-density SNP arrays.
Collapse
Affiliation(s)
- H J Lamb
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4067, Australia.
| | - L T Nguyen
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4067, Australia
| | - J P Copley
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4067, Australia
| | - B N Engle
- USDA, ARS, U.S. Meat Animal Research Centre, Clay Centre, NE, 68933, USA
| | - B J Hayes
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4067, Australia
| | - E M Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4067, Australia
| |
Collapse
|
5
|
Berry DP, Spangler ML. Animal board invited review: Practical applications of genomic information in livestock. Animal 2023; 17:100996. [PMID: 37820404 DOI: 10.1016/j.animal.2023.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Access to high-dimensional genomic information in many livestock species is accelerating. This has been greatly aided not only by continual reductions in genotyping costs but also an expansion in the services available that leverage genomic information to create a greater return-on-investment. Genomic information on individual animals has many uses including (1) parentage verification and discovery, (2) traceability, (3) karyotyping, (4) sex determination, (5) reporting and monitoring of mutations conferring major effects or congenital defects, (6) better estimating inbreeding of individuals and coancestry among individuals, (7) mating advice, (8) determining breed composition, (9) enabling precision management, and (10) genomic evaluations; genomic evaluations exploit genome-wide genotype information to improve the accuracy of predicting an animal's (and by extension its progeny's) genetic merit. Genomic data also provide a huge resource for research, albeit the outcome from this research, if successful, should eventually be realised through one of the ten applications already mentioned. The process for generating a genotype all the way from sample procurement to identifying erroneous genotypes is described, as are the steps that should be considered when developing a bespoke genotyping panel for practical application.
Collapse
Affiliation(s)
- D P Berry
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Cork, Ireland.
| | - M L Spangler
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
6
|
Gand M, Bloemen B, Vanneste K, Roosens NHC, De Keersmaecker SCJ. Comparison of 6 DNA extraction methods for isolation of high yield of high molecular weight DNA suitable for shotgun metagenomics Nanopore sequencing to detect bacteria. BMC Genomics 2023; 24:438. [PMID: 37537550 PMCID: PMC10401787 DOI: 10.1186/s12864-023-09537-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Oxford Nanopore Technologies (ONT) offers an accessible platform for long-read sequencing, which improves the reconstruction of genomes and helps to resolve complex genomic contexts, especially in the case of metagenome analysis. To take the best advantage of long-read sequencing, DNA extraction methods must be able to isolate pure high molecular weight (HMW) DNA from complex metagenomics samples, without introducing any bias. New methods released on the market, and protocols developed at the research level, were specifically designed for this application and need to be assessed. RESULTS In this study, with different bacterial cocktail mixes, analyzed as pure or spiked in a synthetic fecal matrix, we evaluated the performances of 6 DNA extraction methods using various cells lysis and purification techniques, from quick and easy, to more time-consuming and gentle protocols, including a portable method for on-site application. In addition to the comparison of the quality, quantity and purity of the extracted DNA, the performance obtained when doing Nanopore sequencing on a MinION flow cell was also tested. From the obtained results, the Quick-DNA HMW MagBead Kit (Zymo Research) was selected as producing the best yield of pure HMW DNA. Furthermore, this kit allowed an accurate detection, by Nanopore sequencing, of almost all the bacterial species present in a complex mock community. CONCLUSION Amongst the 6 tested methods, the Quick-DNA HMW MagBead Kit (Zymo Research) was considered as the most suitable for Nanopore sequencing and would be recommended for bacterial metagenomics studies using this technology.
Collapse
Affiliation(s)
- Mathieu Gand
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Bram Bloemen
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Sigrid C J De Keersmaecker
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium.
| |
Collapse
|
7
|
Khan MAA, Ghosh P, Chowdhury R, Hossain F, Mahmud A, Faruque ASG, Ahmed T, Abd El Wahed A, Mondal D. Feasibility of MinION Nanopore Rapid Sequencing in the Detection of Common Diarrhea Pathogens in Fecal Specimen. Anal Chem 2022; 94:16658-16666. [DOI: 10.1021/acs.analchem.2c02771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Md Anik Ashfaq Khan
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103Leipzig, Germany
| | - Prakash Ghosh
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Rajashree Chowdhury
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Faria Hossain
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Araf Mahmud
- Laboratory Sciences and Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Abu S. G. Faruque
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Ahmed Abd El Wahed
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Dinesh Mondal
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
- Laboratory Sciences and Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| |
Collapse
|
8
|
Zhou Y, Ren M, Zhang P, Jiang D, Yao X, Luo Y, Yang Z, Wang Y. Application of Nanopore Sequencing in the Detection of Foodborne Microorganisms. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1534. [PMID: 35564242 PMCID: PMC9100974 DOI: 10.3390/nano12091534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/21/2022]
Abstract
Foodborne pathogens have become the subject of intense interest because of their high incidence and mortality worldwide. In the past few decades, people have developed many methods to solve this challenge. At present, methods such as traditional microbial culture methods, nucleic acid or protein-based pathogen detection methods, and whole-genome analysis are widely used in the detection of pathogenic microorganisms in food. However, these methods are limited by time-consuming, cumbersome operations or high costs. The development of nanopore sequencing technology offers the possibility to address these shortcomings. Nanopore sequencing, a third-generation technology, has the advantages of simple operation, high sensitivity, real-time sequencing, and low turnaround time. It can be widely used in the rapid detection and serotyping of foodborne pathogens. This review article discusses foodborne diseases, the principle of nanopore sequencing technology, the application of nanopore sequencing technology in foodborne pathogens detection, as well as its development prospects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.R.); (P.Z.); (D.J.); (X.Y.); (Y.L.); (Z.Y.)
| |
Collapse
|
9
|
Clarke S, Caulton A, McRae K, Brauning R, Couldrey C, Dodds K. Beyond the genome: a perspective on the use of DNA methylation profiles as a tool for the livestock industry. Anim Front 2021; 11:90-94. [PMID: 34934534 PMCID: PMC8683129 DOI: 10.1093/af/vfab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Shannon Clarke
- AgResearch, Invermay Agricultural Centre, Mosgiel, Otago, New Zealand
| | - Alex Caulton
- AgResearch, Invermay Agricultural Centre, Mosgiel, Otago, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Kathryn McRae
- AgResearch, Invermay Agricultural Centre, Mosgiel, Otago, New Zealand
| | - Rudiger Brauning
- AgResearch, Invermay Agricultural Centre, Mosgiel, Otago, New Zealand
| | | | - Ken Dodds
- AgResearch, Invermay Agricultural Centre, Mosgiel, Otago, New Zealand
| |
Collapse
|
10
|
Pavliscak LA, Nirmala J, Singh VK, Sporer KRB, Taxis TM, Kumar P, Goyal SM, Mor SK, Schroeder DC, Wells SJ, Droscha CJ. Tracing Viral Transmission and Evolution of Bovine Leukemia Virus through Long Read Oxford Nanopore Sequencing of the Proviral Genome. Pathogens 2021; 10:1191. [PMID: 34578223 PMCID: PMC8470207 DOI: 10.3390/pathogens10091191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Bovine leukemia virus (BLV) causes Enzootic Bovine Leukosis (EBL), a persistent life-long disease resulting in immune dysfunction and shortened lifespan in infected cattle, severely impacting the profitability of the US dairy industry. Our group has found that 94% of dairy farms in the United States are infected with BLV with an average in-herd prevalence of 46%. This is partly due to the lack of clinical presentation during the early stages of primary infection and the elusive nature of BLV transmission. This study sought to validate a near-complete genomic sequencing approach for reliability and accuracy before determining its efficacy in characterizing the sequence identity of BLV proviral genomes collected from a pilot study made up of 14 animals from one commercial dairy herd. These BLV-infected animals were comprised of seven adult dam/daughter pairs that tested positive by ELISA and qPCR. The results demonstrate sequence identity or divergence of the BLV genome from the same samples tested in two independent laboratories, suggesting both vertical and horizontal transmission in this dairy herd. This study supports the use of Oxford Nanopore sequencing for the identification of viral SNPs that can be used for retrospective genetic contact tracing of BLV transmission.
Collapse
Affiliation(s)
| | - Jayaveeramuthu Nirmala
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (J.N.); (V.K.S.); (S.M.G.); (S.K.M.)
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
| | - Vikash K. Singh
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (J.N.); (V.K.S.); (S.M.G.); (S.K.M.)
| | | | - Tasia M. Taxis
- Department of Large Animal Clinical Science, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Pawan Kumar
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
| | - Sagar M. Goyal
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (J.N.); (V.K.S.); (S.M.G.); (S.K.M.)
| | - Sunil Kumar Mor
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (J.N.); (V.K.S.); (S.M.G.); (S.K.M.)
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK
| | - Scott J. Wells
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
| | - Casey J. Droscha
- CentralStar Cooperative, Lansing, MI 48910, USA; (L.A.P.); (K.R.B.S.)
- Department of Large Animal Clinical Science, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
11
|
Burgess BT, Irvine RL, Howald GR, Russello MA. The Promise of Genetics and Genomics for Improving Invasive Mammal Management on Islands. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.704809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Invasive species are major contributors to global biodiversity decline. Invasive mammalian species (IMS), in particular, have profound negative effects in island systems that contain disproportionally high levels of species richness and endemism. The eradication and control of IMS have become important conservation tools for managing species invasions on islands, yet these management operations are often subject to failure due to knowledge gaps surrounding species- and system-specific characteristics, including invasion pathways and contemporary migration patterns. Here, we synthesize the literature on ways in which genetic and genomic tools have effectively informed IMS management on islands, specifically associated with the development and modification of biosecurity protocols, and the design and implementation of eradication and control programs. In spite of their demonstrated utility, we then explore the challenges that are preventing genetics and genomics from being implemented more frequently in IMS management operations from both academic and non-academic perspectives, and suggest possible solutions for breaking down these barriers. Finally, we discuss the potential application of genome editing to the future management of invasive species on islands, including the current state of the field and why islands may be effective targets for this emerging technology.
Collapse
|