1
|
Geethanjali S, Kadirvel P, Anumalla M, Hemanth Sadhana N, Annamalai A, Ali J. Streamlining of Simple Sequence Repeat Data Mining Methodologies and Pipelines for Crop Scanning. PLANTS (BASEL, SWITZERLAND) 2024; 13:2619. [PMID: 39339594 PMCID: PMC11435353 DOI: 10.3390/plants13182619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Genetic markers are powerful tools for understanding genetic diversity and the molecular basis of traits, ushering in a new era of molecular breeding in crops. Over the past 50 years, DNA markers have rapidly changed, moving from hybridization-based and second-generation-based to sequence-based markers. Simple sequence repeats (SSRs) are the ideal markers in plant breeding, and they have numerous desirable properties, including their repeatability, codominance, multi-allelic nature, and locus specificity. They can be generated from any species, which requires prior sequence knowledge. SSRs may serve as evolutionary tuning knobs, allowing for rapid identification and adaptation to new circumstances. The evaluations published thus far have mostly ignored SSR polymorphism and gene evolution due to a lack of data regarding the precise placements of SSRs on chromosomes. However, NGS technologies have made it possible to produce high-throughput SSRs for any species using massive volumes of genomic sequence data that can be generated fast and at a minimal cost. Though SNP markers are gradually replacing the erstwhile DNA marker systems, SSRs remain the markers of choice in orphan crops due to the lack of genomic resources at the reference level and their adaptability to resource-limited labor. Several bioinformatic approaches and tools have evolved to handle genomic sequences to identify SSRs and generate primers for genotyping applications in plant breeding projects. This paper includes the currently available methodologies for producing SSR markers, genomic resource databases, and computational tools/pipelines for SSR data mining and primer generation. This review aims to provide a 'one-stop shop' of information to help each new user carefully select tools for identifying and utilizing SSRs in genetic research and breeding programs.
Collapse
Affiliation(s)
- Subramaniam Geethanjali
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Palchamy Kadirvel
- Crop Improvement Section, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500030, India
| | - Mahender Anumalla
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños 4031, Laguna, Philippines
- IRRI South Asia Hub, Patancheru, Hyderabad 502324, India
| | - Nithyananth Hemanth Sadhana
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Anandan Annamalai
- Indian Council of Agricultural Research (ICAR), Indian Institute of Seed Science, Bengaluru 560065, India
| | - Jauhar Ali
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños 4031, Laguna, Philippines
| |
Collapse
|
2
|
Fu C, Xiao Y, Jiang N, Yang Y. Genome-wide identification and molecular evolution of Dof gene family in Camellia oleifera. BMC Genomics 2024; 25:702. [PMID: 39026173 PMCID: PMC11264790 DOI: 10.1186/s12864-024-10622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
DNA binding with one finger(Dof) gene family is a class of transcription factors which play an important role on plant growth and development. Genome-wide identification results indicated that there were 45 Dof genes(ColDof) in C.oleifera genome. All 45 ColDof proteins were non-transmembrane and non-secretory proteins. Phosphorylation site analysis showed that biological function of ColDof proteins were mainly realized by phosphorylation at serine (Ser) site. The secondary structure of 44 ColDof proteins was dominated by random coil, and only one ColDof protein was dominated by α-helix. ColDof genes' promoter region contained a variety of cis-acting elements, including light responsive regulators, gibberellin responsive regulators, abscisic acid responsive regulators, auxin responsive regulators and drought induction responsive regulators. The SSR sites analysis showed that the proportion of single nucleotide repeats and the frequency of A/T in ColDof genes were the largest. Non-coding RNA analysis showed that 45 ColDof genes contained 232 miRNAs. Transcription factor binding sites of ColDof genes showed that ColDof genes had 5793 ERF binding sites, 4381 Dof binding sites, 2206 MYB binding sites, 3702 BCR-BPC binding sites. ColDof9, ColDof39 and ColDof44 were expected to have the most TFBSs. The collinearity analysis showed that there were 40 colinear locis between ColDof proteins and AtDof proteins. Phylogenetic analysis showed that ColDof gene family was most closely related to that of Camellia sinensis var. sinensis cv.Biyun and Camellia lanceoleosa. Protein-protein interaction analysis showed that ColDof34, ColDof20, ColDof28, ColDof35, ColDof42 and ColDof26 had the most protein interactions. The transcriptome analysis of C. oleifera seeds showed that 21 ColDof genes were involved in the growth and development process of C. oleifera seeds, and were expressed in 221 C. oleifera varieties. The results of qRT-PCR experiments treated with different concentrations NaCl and PEG6000 solutions indicated that ColDof1, ColDof2, ColDof14 and ColDof36 not only had significant molecular mechanisms for salt stress tolerance, but also significant molecular functions for drought stress tolerance in C. oleifera. The results of this study provide a reference for further understanding of the function of ColDof genes in C.oleifera.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
| | - YuJie Xiao
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - YaoJun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| |
Collapse
|
3
|
Li T, Cai S, Cai Z, Fu Y, Liu W, Zhu X, Lai C, Cui L, Pan W, Li Y. TriticeaeSSRdb: a comprehensive database of simple sequence repeats in Triticeae. FRONTIERS IN PLANT SCIENCE 2024; 15:1412953. [PMID: 38841284 PMCID: PMC11150838 DOI: 10.3389/fpls.2024.1412953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Microsatellites, known as simple sequence repeats (SSRs), are short tandem repeats of 1 to 6 nucleotide motifs found in all genomes, particularly eukaryotes. They are widely used as co-dominant markers in genetic analyses and molecular breeding. Triticeae, a tribe of grasses, includes major cereal crops such as bread wheat, barley, and rye, as well as abundant forage and lawn grasses, playing a crucial role in global food production and agriculture. To enhance genetic work and expedite the improvement of Triticeae crops, we have developed TriticeaeSSRdb, an integrated and user-friendly database. It contains 3,891,705 SSRs from 21 species and offers browsing options based on genomic regions, chromosomes, motif types, and repeat motif sequences. Advanced search functions allow personalized searches based on chromosome location and length of SSR. Users can also explore the genes associated with SSRs, design customized primer pairs for PCR validation, and utilize practical tools for whole-genome browsing, sequence alignment, and in silico SSR prediction from local sequences. We continually update TriticeaeSSRdb with additional species and practical utilities. We anticipate that this database will greatly facilitate trait genetic analyses and enhance molecular breeding strategies for Triticeae crops. Researchers can freely access the database at http://triticeaessrdb.com/.
Collapse
Affiliation(s)
- Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaoshuai Cai
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhibo Cai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Fu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenqiang Liu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiangdong Zhu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chongde Lai
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- The Public Instrument Platform of Jiangxi Agricultural University, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenqiu Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Duhan N, Kaur S, Kaundal R. ranchSATdb: A Genome-Wide Simple Sequence Repeat (SSR) Markers Database of Livestock Species for Mutant Germplasm Characterization and Improving Farm Animal Health. Genes (Basel) 2023; 14:1481. [PMID: 37510385 PMCID: PMC10378808 DOI: 10.3390/genes14071481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Microsatellites, also known as simple sequence repeats (SSRs), are polymorphic loci that play an important role in genome research, animal breeding, and disease control. Ranch animals are important components of agricultural landscape. The ranch animal SSR database, ranchSATdb, is a web resource which contains 15,520,263 putative SSR markers. This database provides a comprehensive tool for performing end-to-end marker selection, from SSRs prediction to generating marker primers and their cross-species feasibility, visualization of the resulting markers, and finding similarities between the genomic repeat sequences all in one place without the need to switch between other resources. The user-friendly online interface allows users to browse SSRs by genomic coordinates, repeat motif sequence, chromosome, motif type, motif frequency, and functional annotation. Users may enter their preferred flanking area around the repeat to retrieve the nucleotide sequence, they can investigate SSRs present in the genic or the genes between SSRs, they can generate custom primers, and they can also execute in silico validation of primers using electronic PCR. For customized sequences, an SSR prediction pipeline called miSATminer is also built. New species will be added to this website's database on a regular basis throughout time. To improve animal health via genomic selection, we hope that ranchSATdb will be a useful tool for mapping quantitative trait loci (QTLs) and marker-assisted selection. The web-resource is freely accessible at https://bioinfo.usu.edu/ranchSATdb/.
Collapse
Affiliation(s)
- Naveen Duhan
- Department of Plants, Soils, and Climate/Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, Utah State University, Logan, UT 84322, USA
| | - Simardeep Kaur
- Department of Plants, Soils, and Climate/Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- ICAR-Research Complex for North Eastern Hill Region (NEH), Umiam 793103, India
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate/Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
5
|
Singh J, Sharma A, Sharma V, Gaikwad PN, Sidhu GS, Kaur G, Kaur N, Jindal T, Chhuneja P, Rattanpal HS. Comprehensive genome-wide identification and transferability of chromosome-specific highly variable microsatellite markers from citrus species. Sci Rep 2023; 13:10919. [PMID: 37407627 DOI: 10.1038/s41598-023-37024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Citrus species among the most important and widely consumed fruit in the world due to Vitamin C, essential oil glands, and flavonoids. Highly variable simple sequence repeats (SSR) markers are one of the most informative and versatile molecular markers used in perennial tree genetic research. SSR survey of Citrus sinensis and Citrus maxima were identified perfect SSRs spanning nine chromosomes. Furthermore, we categorized all SSR motifs into three major classes based on their tract lengths. We designed and validated a class I SSRs in the C. sinensis and C. maxima genome through electronic polymerase chain reaction (ePCR) and found 83.89% in C. sinensis and 78.52% in C. maxima SSRs producing a single amplicon. Then, we selected extremely variable SSRs (> 40 nt) from the ePCR-verified class I SSRs and in silico validated across seven draft genomes of citrus, which provided us a subset of 84.74% in C. sinensis and 77.53% in C. maxima highly polymorphic SSRs. Out of these, 129 primers were validated on 24 citrus genotypes through wet-lab experiment. We found 127 (98.45%) polymorphic HvSSRs on 24 genotypes. The utility of the developed HvSSRs was demonstrated by analysing genetic diversity of 181 citrus genotypes using 17 HvSSRs spanning nine citrus chromosomes and were divided into 11 main groups through 17 HvSSRs. These chromosome-specific SSRs will serve as a powerful genomic tool used for future QTL mapping, molecular breeding, investigation of population genetic diversity, comparative mapping, and evolutionary studies among citrus and other relative genera/species.
Collapse
Affiliation(s)
- Jagveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
- Department of Fruit Science, College of Horticulture & Forestry, Acharya Narendra Deva University of Agricultural & Technology, Kumarganj, 224229, India
| | - Ankush Sharma
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Vishal Sharma
- National Agri-Food Biotechnology Institute, Sector-81, SAS Nagar, Mohali, Punjab, 140308, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, India
| | - Popat Nanaso Gaikwad
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Gurupkar Singh Sidhu
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Nimarpreet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Taveena Jindal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - H S Rattanpal
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
6
|
Itoo H, Shah RA, Qurat S, Jeelani A, Khursheed S, Bhat ZA, Mir MA, Rather GH, Zargar SM, Shah MD, Padder BA. Genome-wide characterization and development of SSR markers for genetic diversity analysis in northwestern Himalayas Walnut ( Juglans regia L.). 3 Biotech 2023; 13:136. [PMID: 37124992 PMCID: PMC10130282 DOI: 10.1007/s13205-023-03563-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/15/2023] [Indexed: 05/02/2023] Open
Abstract
In the present study, we designed and validated genome-wide polymorphic SSR markers (110 SSRs) by mining the walnut genome. A total of 198,924 SSR loci were identified. Among these, successful primers were designed for 162,594 (81.73%) SSR loci. Dinucleotides were the most predominant accounting for 88.40% (175,075) of total SSRs. The SSR frequency was 377.312 SSR/Mb and it showed a decreasing trend from dinucleotide to octanucleotide motifs. We identified 20 highly polymorphic SSR markers and used them to genotype 72 walnut accessions. Over all, we obtained 118 alleles that ranged from 2 to 12 with an average value of 5.9. The higher SSR PIC values indicate their robustness in discriminating walnut genotypes. Heat map, PCA, and population structure categorized 72 walnut genotypes into 2 distinct clusters. The genetic variation within population was higher than among population as inferred by analysis of molecular variance (AMOVA). For walnut improvement, it is necessary to have a large repository of SSRs with high discriminative power. The present study reports 150,000 SSRs, which is the largest SSR repository for this important nut crop. Scientific communities may use this repository for walnut improvement such as QTL mapping, genetic studies, linkage map construction, and marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03563-6.
Collapse
Affiliation(s)
- H. Itoo
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Rafiq Ahmad Shah
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - S. Qurat
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - Afnan Jeelani
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - Sheikh Khursheed
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Zahoor A. Bhat
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - M. A. Mir
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - G. H. Rather
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - M. D. Shah
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Kashmir, 190 025 Srinagar, J&K India
| | - Bilal A. Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Kashmir, 190 025 Srinagar, J&K India
| |
Collapse
|
7
|
Duhan N, Kaundal R. LegumeSSRdb: A Comprehensive Microsatellite Marker Database of Legumes for Germplasm Characterization and Crop Improvement. Int J Mol Sci 2021; 22:ijms222111350. [PMID: 34768782 PMCID: PMC8583334 DOI: 10.3390/ijms222111350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Microsatellites, or simple sequence repeats (SSRs), are polymorphic loci that play a major role as molecular markers for genome analysis and plant breeding. The legume SSR database is a webserver which contains simple sequence repeats (SSRs) from genomes of 13 legume species. A total of 3,706,276 SSRs are present in the database, 698,509 of which are genic SSRs, and 3,007,772 are non-genic. This webserver is an integrated tool to perform end-to-end marker selection right from generating SSRs to designing and validating primers, visualizing the results and blasting the genomic sequences at one place without juggling between several resources. The user-friendly web interface allows users to browse SSRs based on the genomic region, chromosome, motif type, repeat motif sequence, frequency of motif, and advanced searches allow users to search based on chromosome location range and length of SSR. Users can give their desired flanking region around repeat and obtain the sequence, they can explore the genes in which the SSRs are present or the genes between which the SSRs are bound design custom primers, and perform in silico validation using PCR. An SSR prediction pipeline is implemented where the user can submit their genomic sequence to generate SSRs. This webserver will be frequently updated with more species, in time. We believe that legumeSSRdb would be a useful resource for marker-assisted selection and mapping quantitative trait loci (QTLs) to practice genomic selection and improve crop health. The database can be freely accessed at http://bioinfo.usu.edu/legumeSSRdb/.
Collapse
Affiliation(s)
- Naveen Duhan
- Department of Plants, Soils and Climate, CAAS, Utah State University, Logan, UT 84321, USA;
- Center for Integrated BioSystems (CIB), CAAS, Utah State University, Logan, UT 84321, USA
| | - Rakesh Kaundal
- Department of Plants, Soils and Climate, CAAS, Utah State University, Logan, UT 84321, USA;
- Center for Integrated BioSystems (CIB), CAAS, Utah State University, Logan, UT 84321, USA
- Department of Computer Science, CoS, Utah State University, Logan, UT 84321, USA
- Correspondence: ; Tel.: +1-435-797-4117; Fax: +1-435-797-2766
| |
Collapse
|