1
|
Konopová B. Evolution of insect metamorphosis - an update. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101289. [PMID: 39490982 DOI: 10.1016/j.cois.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Metamorphosis endowed the insects with properties that enabled them to conquer the Earth. It is a hormonally controlled morphogenetic process that transforms the larva into the adult. Metamorphosis appeared with the origin of wings and flight. The sesquiterpenoid juvenile hormone (JH) suppresses wing morphogenesis and ensures that metamorphosis takes place at the right ontogenetic time. This review explores the origin of insect metamorphosis and the ancestral function of JH. Fossil record shows that the first Paleozoic winged insects had (hemimetabolous) metamorphosis, and their larvae were likely aquatic. In the primitive wingless silverfish that lacks metamorphosis, JH is essential for late embryogenesis and reproduction. JH production after the embryo dorsal closure promotes hatching and terminal tissue maturation.
Collapse
Affiliation(s)
- Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Bai Y, Lv YN, Zeng M, Yan ZY, Huang DY, Wen JZ, Lu HN, Zhang PY, Wang YF, Ban N, Yuan DW, Li S, Luan YX. E93 is indispensable for reproduction in ametabolous and hemimetabolous insects. Development 2024; 151:dev202518. [PMID: 38646855 DOI: 10.1242/dev.202518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Ecdysone-induced protein 93 (E93), known as the 'adult-specifier' transcription factor in insects, triggers metamorphosis in both hemimetabolous and holometabolous insects. Although E93 is conserved in ametabolous insects, its spatiotemporal expression and physiological function remain poorly understood. In this study, we first discover that, in the ametabolous firebrat Thermobia domestica, the previtellogenic ovary exhibits cyclically high E93 expression, and E93 mRNA is broadly distributed in previtellogenic ovarioles. E93 homozygous mutant females of T. domestica exhibit severe fecundity deficiency due to impaired previtellogenic development of the ovarian follicles, likely because E93 induces the expression of genes involved in ECM (extracellular matrix)-receptor interactions during previtellogenesis. Moreover, we reveal that in the hemimetabolous cockroach Blattella germanica, E93 similarly promotes previtellogenic ovarian development. In addition, E93 is also essential for vitellogenesis that is necessary to guarantee ovarian maturation and promotes the vitellogenesis-previtellogenesis switch in the fat body of adult female cockroaches. Our findings deepen the understanding of the roles of E93 in controlling reproduction in insects, and of E93 expression and functional evolution, which are proposed to have made crucial contributions to the origin of insect metamorphosis.
Collapse
Affiliation(s)
- Yu Bai
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510000, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Ya-Nan Lv
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510000, China
| | - Mei Zeng
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510000, China
| | - Zi-Yu Yan
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510000, China
| | - Dan-Yan Huang
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510000, China
| | - Jia-Zhen Wen
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510000, China
| | - Hu-Na Lu
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510000, China
| | - Pei-Yan Zhang
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510000, China
| | - Yi-Fan Wang
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510000, China
| | - Ning Ban
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510000, China
| | - Dong-Wei Yuan
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510000, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510000, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| |
Collapse
|
3
|
Lv YN, Zeng M, Yan ZY, Zhang PY, Ban N, Yuan DW, Li S, Luan YX, Bai Y. Juvenile hormone signaling is indispensable for late embryogenesis in ametabolous and hemimetabolous insects. BMC Biol 2024; 22:232. [PMID: 39394161 PMCID: PMC11470741 DOI: 10.1186/s12915-024-02029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Juvenile hormone (JH) is an insect-exclusive hormone involved in regulating diverse aspects of insect physiology, and the evolution of its diverse function is widely interesting. Studying embryogenesis in basal wingless insects is important to understand the functional evolution of JH; however, experimental studies in this regard are scarce. In this study, we conducted CRISPR/Cas9-mediated knockout (KO) of genes involved in JH biosynthesis and signaling cascades in the ametabolous firebrat, Thermobia domestica. Additionally, we investigated whether the primitive action of JH is conserved in the hemimetabolous cricket, Gryllus bimaculatus. RESULTS We observed that KO of JHAMT, CYP15A1, Met, and Kr-h1 resulted in embryonic lethality in T. domestica. Deprivation of JH or JH signaling arrested the progression of extraembryonic fluid resorption after dorsal closure and hatching, which is consistent with the gene expression pattern showing high Kr-h1 expression in the late embryos of T. domestica. The embryos deficient in JH signaling displayed wrinkled and weak legs. Comparative transcriptome analysis revealed that JH signaling promotes embryonic leg maturation through inducing energy supply and muscle activity, as validated by transmission electron microscopy (TEM). In addition, JH signaling exhibited similar embryonic effects in G. bimaculatus. CONCLUSIONS This study reveals the indispensable role of JH signaling in facilitating the maturation of terminal tissues during late embryogenesis, as demonstrated by the regulation of leg development, in ametabolous and hemimetabolous insects. These findings further indicate that the embryonic functions of JH evolved earlier than its anti-metamorphic functions during postembryonic development.
Collapse
Affiliation(s)
- Ya-Nan Lv
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Mei Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Zi-Yu Yan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Pei-Yan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Ning Ban
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Dong-Wei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| | - Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| |
Collapse
|
4
|
Zhao R, Guo X, Meng L, Li B. Identification and validation of reference genes for RT-qPCR analysis in Sclerodermus guani (Hymenoptera: Bethylidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:613-621. [PMID: 39371021 DOI: 10.1017/s0007485324000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Gene expression studies in organisms are often conducted using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), and the accuracy of RT-qPCR results relies on the stability of reference genes. We examined ten candidate reference genes in Sclerodermus guani, a parasitoid wasp that is a natural enemy of long-horned beetle pests in forestry, including ACT, EF1α, Hsc70, Hsp70, SRSF7, α-tubulin, RPL7A, 18S, 28S, and SOD1, regarding variable biotic and abiotic factors such as body part, life stage, hormone, diet, and temperature. Data were analysed using four dedicated algorithms (ΔCt, BestKeeper, NormFinder, and geNorm) and one comparative tool (RefFinder). Our results showed that the most stable reference genes were RPL7A and EF1α regarding the body part, SRSF7 and Hsc70 regarding the diet, RPL7A and α-tubulin regarding the hormone, SRSF7 and RPL7A regarding the life stage, and SRSF7 and α-tubulin regarding temperature. To ascertain the applicability of specific reference genes, the expression level of the target gene (ACPase) was estimated regarding the body part using the most stable reference genes, RPL7A and EF1α, and the least stable one, SOD1. The highest expression level of ACPase was observed in the abdomen, and the validity of RPL7A and EF1α was confirmed. This study provides, for the first time, an extensive list of reliable reference genes for molecular biology studies in S. guani.
Collapse
Affiliation(s)
- Rina Zhao
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Xiaomeng Guo
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
- Research Institute of Agricultural Sciences of Zhenjiang city, Zhenjiang, Jiangsu Province, PR China
| | - Ling Meng
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Baoping Li
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
5
|
Nguyen YDH, Pham TLA, Nishihara T, Kamei K, Tran DB. Depletion of lipid storage droplet-1 delays endoreplication progression and induces cell death in Drosophila salivary gland. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22132. [PMID: 38993002 DOI: 10.1002/arch.22132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/15/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Perilipins are evolutionarily conserved from insects to mammals. Drosophila lipid storage droplet-1 (LSD-1) is a lipid storage droplet membrane surface-binding protein family member and a counterpart to mammalian perilipin 1 and is known to play a role in lipolysis. However, the function of LSD-1 during specific tissue development remains under investigation. This study demonstrated the role of LSD-1 in salivary gland development. Knockdown of Lsd-1 in the salivary gland was established using the GAL4/UAS system. The third-instar larvae of knockdown flies had small salivary glands containing cells with smaller nuclei. The null mutant Drosophila also showed the same phenotype. The depletion of LSD-1 expression induced a delay of endoreplication due to decreasing CycE expression and increasing DNA damage. Lsd-1 genetically interacted with Myc in the third-instar larvae. These results demonstrate that LSD-1 is involved in cell cycle and cell death programs in the salivary gland, providing novel insight into the effects of LSD-1 in regulating salivary gland development and the interaction between LSD-1 and Myc.
Collapse
Affiliation(s)
- Yen D H Nguyen
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| | - Tuan L A Pham
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| | - Taisei Nishihara
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| | - Kaeko Kamei
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| | - Duy Binh Tran
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
6
|
Dalai M, Jagota A. Identification of specific reference gene for normalization of RT-qPCR data in rhythmic gene expression studies of the effect of developmental hormone antagonist in postembryonic development in Bombyx mori. FRONTIERS IN INSECT SCIENCE 2024; 4:1362473. [PMID: 39006940 PMCID: PMC11239437 DOI: 10.3389/finsc.2024.1362473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
Bombyx mori is a lepidopteran holometabolous insect with distinct developmental stages: egg, larvae, pupae, and adult. The lepidopteran insect undergoes major modifications in the central nervous system (CNS) so as to adapt to the lifestyle of these distinct stages with specific habitats and functions from voraciously feeding larval stages to flying reproductive adults via dormant pupal stages. Such transitions are linked to transcriptional, epigenetic, and translational complexities. Therefore, studying rhythmic gene expression in CNS of various developmental stages and the effects of antagonists on developmental hormones requires a very stable reference gene (RG). To facilitate rhythmic gene expression studies using reverse transcription quantitative polymerase chain reaction (RT-qPCR) in B. mori and the effect of developmental hormone juvenile hormone (JH) and 20-hydroxy ecdysone hormone (20 HE), antagonists Precocene 1 and testosterone, respectively, were used. Eight candidate RGs, namely, Translational initiation factor 3 subunit 4 (TI3S4), Translational initiation factor 3 subunit 5 (TI3S5), Ribosomal protein subunit 7 (RPs7), TATA-binding protein association factor (TAF13), Translational initiation factor 4 A (TI4A), Ribosomal protein (RPL32), Elongation factor 1 (EF1), and Arginine kinase (AK), were assessed in the CNS of B. mori. The postembryonic developmental (PED) stages used were the fifth late larval instar, early pupa, mid pupa, late pupa, and adult. The assessments were done at four different time points, Zeitgeber time (ZT) 0, 6, 12, and 18, to find stability towards 24-h rhythmic expression. RefFinder, geNorm, and Ct value analysis were performed. RefFinder and geNORM studies suggested stability order as TI3S4 > TI3S5 > RPs7, but Ct value evaluation showed stability order as TI3S5 > TI3S4 > RPs7. We therefore demonstrated that TI3S4, TI3S5, and RPs7 can be used as RG in various PED stages in CNS of B. mori (Strain: CB-hybrid, PM×CSR2) towards studies with effects of JH and 20 HE antagonists.
Collapse
Affiliation(s)
- Minurani Dalai
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Anita Jagota
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
7
|
Truman JW, Riddiford LM, Konopova B, Nouzova M, Noriega FG, Herko M. The embryonic role of juvenile hormone in the firebrat, Thermobia domestica, reveals its function before its involvement in metamorphosis. eLife 2024; 12:RP92643. [PMID: 38568859 PMCID: PMC10994664 DOI: 10.7554/elife.92643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Barbora Konopova
- Department of Zoology, Faculty of Science, University of South BohemiaCeske BudejoviceCzech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
| | - Fernando G Noriega
- Department of Biological Sciences and BSI, Florida International UniversityMiamiUnited States
- Department of Parasitology, Faculty of Science, University of South BohemiaCeské BudejoviceCzech Republic
| | - Michelle Herko
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
| |
Collapse
|
8
|
Özdemir ÖÜ, Yurt K, Pektaş AN, Berk Ş. Evaluation and normalization of a set of reliable reference genes for quantitative sgk-1 gene expression analysis in Caenorhabditis elegans-focused cancer research. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:91-110. [PMID: 38359339 DOI: 10.1080/15257770.2024.2317413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Multiple signaling pathways have been discovered to play a role in aging and longevity, including the insulin/IGF-1 signaling system, AMPK pathway, TOR signaling, JNK pathway, and germline signaling. Mammalian serum and glucocorticoid-inducible kinase 1 (sgk-1), which has been associated with various disorders including hypertension, obesity, and tumor growth, limits survival in C. elegans by reducing DAF-16/FoxO activity while suppressing FoxO3 activity in human cell culture. C. elegans provides significant protection for a number of genes associated with human cancer. The best known of these are the lin-35/pRb (mammalian ortholog pRb) and CEP-1 (mammalian ortholog p53) genes. Therefore, in this study, we aimed to investigate the expression analyzes of sgk-1, which is overexpressed in many types of mammalian cancer, in mutant lin-35 and to demonstrate the validation of reference genes in wild-type N2 and mutant lin-35 for C. elegans-focused cancer research. To develop functional genomic studies in C. elegans, we evaluated the expression stability of five candidate reference genes (act-1, ama-1, cdc-42, pmp-3, iscu-1) by quantitative real-time PCR using five algorithms (geNorm, NormFinder, Delta Ct method, BestKeeper, RefFinder) in N2 and lin-35 worms. According to our findings, act-1 and cdc-42 were effective in accurately normalizing the levels of gene expression in N2 and lin-35. act-1 and cdc-42 also displayed the most consistent expression patterns, therefore they were utilized to standardize expression level of sgk-1. Furthermore, our results clearly showed that sgk-1 was upregulated in lin-35 worms compared to N2 worms. Our results highlight the importance of definitive validation using mostly expressed reference genes.
Collapse
Affiliation(s)
- Özgür Ülkü Özdemir
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Kübra Yurt
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ayşe Nur Pektaş
- Advanced Technology Research and Application Center (CUTAM), Sivas Cumhuriyet University, Sivas, Turkey
| | - Şeyda Berk
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
- Advanced Technology Research and Application Center (CUTAM), Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
9
|
Reliable reference genes for qPCR normalization in females of the mirid predator, Cyrtorhinus lividipennis (Hemiptera: Miridae). Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Meng Q, Shu B, Sun S, Wang Y, Yang M, Zhu E, Liu A, Gao S, Gou Y, Wang Z. Selection of reference genes for quantitative real-time PCR normalization in the coffee white stem borer, Xylotrechus quadripes Chevrolat (Coleoptera: Cerambycidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:151-161. [PMID: 35301961 DOI: 10.1017/s0007485321000596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The coffee white stem borer, Xylotrechus quadripes Chevrolat (Coleoptera: Cerambycidae), is a major destructive pest of Coffea arabica L. (Gentianales: Rubiaceae), widely planted in many Asian countries, including China. Quantitative real-time polymerase chain reaction (qRT-PCR) is a common method for quantitative analysis of gene transcription levels. To obtain accurate and reliable qRT-PCR results, it is necessary to select suitable reference genes to different experimental conditions for normalizing the target gene expression. However, the stability of the expression of reference genes in X. quadripes has rarely been studied. In this study, the expression stability of nine candidate reference genes were investigated under biotic and abiotic conditions for use in qRT-PCR's normalization. By integrating the results of four algorithms of NormFinder, BestKeeper, geNorm, and RefFinder, the optimal reference gene combinations in different experimental conditions were performed as follows: RPL10a and EIF3D were the optimal reference genes for developmental stage samples, EIF4E, RPL10a, and RPS27a for tissue samples, V-ATP and EF1α for the sex samples, EIF3D and V-ATP for temperature treatment, RPS27a and RPL10a for insecticide stress, and RPL10a, RPS27a, and EF1α for all the samples. This study will help to obtain the stable internal reference genes under biotic and abiotic conditions and lay the foundation for in-depth functional research of target genes or genomics on olfactory molecular mechanisms, temperature adaptability, and insecticide resistance in X. quadripes.
Collapse
Affiliation(s)
- Qianqian Meng
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning571533, P.R. China
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou510000, P.R. China
| | - Shiwei Sun
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning571533, P.R. China
| | - Ying Wang
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning571533, P.R. China
- College of Tropical Crops, Yunnan Agricultural University, Puer665000, P.R. China
| | - Mei Yang
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning571533, P.R. China
- College of Tropical Crops, Yunnan Agricultural University, Puer665000, P.R. China
| | - Enhang Zhu
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning571533, P.R. China
- College of Tropical Crops, Yunnan Agricultural University, Puer665000, P.R. China
| | - Aiqin Liu
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning571533, P.R. China
| | - Shengfeng Gao
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning571533, P.R. China
| | - Yafeng Gou
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning571533, P.R. China
| | - Zheng Wang
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning571533, P.R. China
| |
Collapse
|
11
|
Sellamuthu G, Bílý J, Joga MR, Synek J, Roy A. Identifying optimal reference genes for gene expression studies in Eurasian spruce bark beetle, Ips typographus (Coleoptera: Curculionidae: Scolytinae). Sci Rep 2022; 12:4671. [PMID: 35304502 PMCID: PMC8933438 DOI: 10.1038/s41598-022-08434-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Eurasian spruce bark beetle (Ips typographus [L.]) causes substantial damage to spruce forests worldwide. Undoubtedly, more aggressive measures are necessary to restrict the enduring loss. Finishing genome sequencing is a landmark achievement for deploying molecular techniques (i.e., RNA interference) to manage this pest. Gene expression studies assist in understanding insect physiology and deployment of molecular approaches for pest management. RT-qPCR is a valuable technique for such studies. However, accuracy and reliability depend on suitable reference genes. With the genome sequence available and the growing requirement of molecular tools for aggressive forest pest management, it is crucial to find suitable reference genes in Ips typographus under different experimental conditions. Hence, we evaluated the stability of twelve candidate reference genes under diverse experimental conditions such as biotic (developmental, sex and tissues) and abiotic factors (i.e., temperature and juvenile hormone treatment) to identify the reference genes. Our results revealed that ribosomal protein 3a (RPS3-a) was the best reference gene across all the experimental conditions, with minor exceptions. However, the stability of the reference gene can differ based on experiments. Nevertheless, present study provides a comprehensive list of reference genes under different experimental conditions for Ips typographus and contributes to "future genomic and functional genomic research".
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jan Bílý
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Mallikarjuna Reddy Joga
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jiří Synek
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amit Roy
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic. .,EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
| |
Collapse
|
12
|
Fu H, Huang T, Yin C, Xu Z, Li C, Liu C, Wu T, Song F, Feng F, Yang F. Selection and Validation of Reference Genes for RT-qPCR Normalization in Bradysia odoriphaga (Diptera: Sciaridae) Under Insecticides Stress. Front Physiol 2022; 12:818210. [PMID: 35087425 PMCID: PMC8786907 DOI: 10.3389/fphys.2021.818210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is the most serious root maggot pest which causes substantial damage to the Chinese chive. Organophosphate (OP) and neonicotinoid insecticides are widely used chemical pesticides and play important roles in controlling B. odoriphaga. However, a strong selection pressure following repeated pesticide applications has led to the development of resistant populations of this insect. To understand the insecticide resistance mechanism in B. odoriphaga, gene expression analysis might be required. Appropriate reference gene selection is a critical prerequisite for gene expression studies, as the expression stability of reference genes can be affected by experimental conditions, resulting in biased or erroneous results. The present study shows the expression profile of nine commonly used reference genes [elongation factor 1α (EF-1α), actin2 (ACT), elongation factor 2α (EF-2α), glucose-6-phosphate dehydrogenase (G6PDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein L10 (RPL10), ribosomal protein S3 (RPS3), ubiquitin-conjugating enzyme (UBC), and α-tubulin (TUB)] was systematically analyzed under insecticide stress. Moreover, we also evaluated their expression stability in other experimental conditions, including developmental stages, sexes, and tissues. Five programs (NormFinder, geNorm, BestKeeper, RefFinder, and ΔCt) were used to validate the suitability of candidate reference genes. The results revealed that the most appropriate sets of reference genes were RPL10 and ACT across phoxim; ACT and TUB across chlorpyrifos and chlorfluazuron; EF1α and TUB across imidacloprid; EF1α and EF2α across developmental stages; RPL10 and TUB across larvae; EF1α and ACT across tissues, and ACT and G6PDH across sex. These results will facilitate the standardization of RT-qPCR and contribute to further research on B. odoriphaga gene function under insecticides stress.
Collapse
Affiliation(s)
- Haiyan Fu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China.,College of Life Science, Northeast Forestry University, Harbin, China
| | - Tubiao Huang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Cheng Yin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Zhenhua Xu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Chao Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Chunguang Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Tong Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Fujuan Feng
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
13
|
Su RR, Huang ZY, Qin CW, Zheng XL, Lu W, Wang XY. Evaluation of Reference Genes in Glenea cantor (Fabricius) by Using qRT-PCR. Genes (Basel) 2021; 12:1984. [PMID: 34946935 PMCID: PMC8701190 DOI: 10.3390/genes12121984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/04/2022] Open
Abstract
Kapok is the main host of Glenea cantor (Fabricius), which causes serious damage and is difficult to control. In severe cases, it often causes the kapok trees to die continuously, which seriously affects the results of urban landscaping. To provide reference for the functional research on related genes in G. cantor, we screened the stable expression of candidate reference genes at different developmental stages (i.e., eggs, larvae, pupae, and adults), in various adult tissues (i.e., head, thorax, abdomen, feet, antennae, and wings), and sexes (i.e., male pupae, female pupae, male adults, and female adults). In this study, 12 candidate reference genes (i.e., ACTINLIKE, ACTININ, TUB, RPL36, RPL32, RPS20, TBP, GAPDH, 18S rRNA, EF1A1, EF1A2, and UBQ) were evaluated using different adult tissues, developmental stages, and sexes. RefFinder, geNorm, NormFinder, and BestKeeper were used to evaluate and comprehensively analyze the stability of the expression of the candidate reference genes. The results show that RPL32 and EF1A1 were the most suitable reference genes in the different adult tissues, and RPL36 and EF1A1 were best at the different developmental stages. RPL36 and EF1A2 were the best fit for the qRT-PCR reference genes in the different sexes, while RPL36 and EF1A1 were the most appropriate qRT-PCR reference genes in all samples. Results from geNorm showed that the optimal number of reference genes was two. We also surveyed the expression of cellulase at the different developmental stages and in the different adult tissues. Results further verified the reliability of the reference genes, and confirmed the best reference genes under the different experimental conditions. This study provides a useful tool for molecular biological studies on G. cantor.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (R.-R.S.); (Z.-Y.H.); (C.-W.Q.); (X.-L.Z.); (W.L.)
| |
Collapse
|
14
|
Sellamuthu G, Amin S, Bílý J, Synek J, Modlinger R, Sen MK, Chakraborty A, Roy A. Reference Gene Selection for Normalizing Gene Expression in Ips Sexdentatus (Coleoptera: Curculionidae: Scolytinae) Under Different Experimental Conditions. Front Physiol 2021; 12:752768. [PMID: 34777015 PMCID: PMC8580292 DOI: 10.3389/fphys.2021.752768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae) is one of the most destructive and economically important forest pests. A better understanding of molecular mechanisms underlying its adaptation to toxic host compounds may unleash the potential for future management of this pest. Gene expression studies could be considered as one of the key experimental approaches for such purposes. A suitable reference gene selection is fundamental for quantitative gene expression analysis and functional genomics studies in I. sexdentatus. Twelve commonly used reference genes in Coleopterans were screened under different experimental conditions to obtain accurate and reliable normalization of gene expression data. The majority of the 12 reference genes showed a relatively stable expression pattern among developmental stages, tissue-specific, and sex-specific stages; however, some variabilities were observed during varied temperature incubation. Under developmental conditions, the Tubulin beta-1 chain (β-Tubulin) was the most stable reference gene, followed by translation elongation factor (eEF2) and ribosomal protein S3 (RPS3). In sex-specific conditions, RPS3, β-Tubulin, and eEF2 were the most stable reference genes. In contrast, different sets of genes were shown higher stability in terms of expression under tissue-specific conditions, i.e., RPS3 and eEF2 in head tissue, V-ATPase-A and eEF2 in the fat body, V-ATPase-A and eEF2 in the gut. Under varied temperatures, β-Tubulin and V-ATPase-A were most stable, whereas ubiquitin (UbiQ) and V-ATPase-A displayed the highest expression stability after Juvenile Hormone III treatment. The findings were validated further using real-time quantitative reverse transcription PCR (RT-qPCR)-based target gene expression analysis. Nevertheless, the present study delivers a catalog of reference genes under varied experimental conditions for the coleopteran forest pest I. sexdentatus and paves the way for future gene expression and functional genomic studies on this species.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Shan Amin
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia.,Department of Biology, Lund University, Lund, Sweden
| | - Jan Bílý
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jirí Synek
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Roman Modlinger
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Amrita Chakraborty
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Amit Roy
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia.,EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
15
|
Yang AP, Wang YS, Huang C, Lv ZC, Liu WX, Bi SY, Wan FH, Wu Q, Zhang GF. Screening Potential Reference Genes in Tuta absoluta with Real-Time Quantitative PCR Analysis under Different Experimental Conditions. Genes (Basel) 2021; 12:genes12081253. [PMID: 34440427 PMCID: PMC8391263 DOI: 10.3390/genes12081253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Tuta absoluta is one of the most significant invasive pests affecting tomato plants worldwide. RT-qPCR has emerged as one of the most sensitive and accurate methods for detecting gene expression data. The screening of stable internal reference genes is the most critical step for studying the molecular mechanisms of environmental adaptability. The stable reference genes expressed in T. absoluta under specific experimental conditions have not yet been clarified. In this study, seven candidate reference genes (RPL27, RPS13, RPS15, EF1-α, TUB, TBP, and β-actin) and their optimal numbers were evaluated under biotic (developmental stages and adult tissues) and abiotic (insecticide, temperature, and plant VOC) conditions using four software programs. Our results identified the following reference genes and numbers as optimal: three genes (EF1-α, RPS13, and RPL27) for different developmental stages (egg, larva, pupa, unmated adult), two genes (RPS13 and TBP) for adult tissues (antenna, head, thorax, abdomen, leg), two genes (TBP and RPS13) for insecticides (Bacillus thuringiensis, chlorpyrifos, abamectin-aminomethyl, and chlorantraniliprole), two genes (RPL27 and TUB) for temperature-induced stresses (0, 25, and 40 °C), and two genes (RPS13 and TUB) for VOC-induced stresses (nonanal, α-phellandrene, and tomato leaves). Our results provide a reference for selecting appropriate reference genes for further study of the functional genes of T. absoluta under different experimental conditions.
Collapse
Affiliation(s)
- An-Pei Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.-P.Y.); (Y.-S.W.); (Z.-C.L.); (W.-X.L.); (S.-Y.B.); (F.-H.W.); (Q.W.)
- Institute of Plant Protection, Xinjiang Academy of Agricultural Science, Urumqi 830091, China
| | - Yu-Sheng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.-P.Y.); (Y.-S.W.); (Z.-C.L.); (W.-X.L.); (S.-Y.B.); (F.-H.W.); (Q.W.)
| | - Cong Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Zhi-Chuang Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.-P.Y.); (Y.-S.W.); (Z.-C.L.); (W.-X.L.); (S.-Y.B.); (F.-H.W.); (Q.W.)
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.-P.Y.); (Y.-S.W.); (Z.-C.L.); (W.-X.L.); (S.-Y.B.); (F.-H.W.); (Q.W.)
| | - Si-Yan Bi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.-P.Y.); (Y.-S.W.); (Z.-C.L.); (W.-X.L.); (S.-Y.B.); (F.-H.W.); (Q.W.)
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.-P.Y.); (Y.-S.W.); (Z.-C.L.); (W.-X.L.); (S.-Y.B.); (F.-H.W.); (Q.W.)
| | - Qiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.-P.Y.); (Y.-S.W.); (Z.-C.L.); (W.-X.L.); (S.-Y.B.); (F.-H.W.); (Q.W.)
| | - Gui-Fen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.-P.Y.); (Y.-S.W.); (Z.-C.L.); (W.-X.L.); (S.-Y.B.); (F.-H.W.); (Q.W.)
- Correspondence:
| |
Collapse
|