1
|
Masson E, Zou WB, Pu N, Rebours V, Génin E, Wu H, Lin JH, Wang YC, Abrantes A, Aguilera Munoz L, Albouys J, Alric L, Amiot X, Archambeaud I, Audiau S, Bastide L, Baudon J, Bellaiche G, Bellon S, Bertrand V, Bideau K, Billiemaz K, Billioud C, Bonnefoy S, Borderon C, Bournet B, Breton E, Brugel M, Buscail L, Cadiot G, Camus M, Causse X, Chamouard P, Chaput U, Cholet F, Ciocan DM, Clavel C, Coffin B, Coimet-Berger L, Creveaux I, Culetto A, Daboussi O, Mestier LDE, Degand T, D'Engremont C, Denis B, Dermine S, Desgrippes R, D'Aubigny AD, Enaud R, Fabre A, Gargot D, Gelsi E, Gentilcore E, Gincul R, Ginglinger-Favre E, Giovannini M, Gomercic C, Gondran H, Grainville T, Grandval P, Grasset D, Grimaldi S, Grimbert S, Hagege H, Heissat S, Hentic O, Herber-Mayne A, Hervouet M, Hoibian S, Jacques J, Jais B, Kaassis M, Koch S, Lacaze E, Lacroute J, Lamireau T, Laurent L, Guillou XLE, Rhun MLE, Leblanc S, Levy P, Lievre A, Lorenzo D, Maire F, Marcel K, Matias C, Mauillon J, Morgant S, Moussata D, Muller N, Nambot S, Napoleon B, Olivier A, Pagenault M, Pelletier AL, Pennec O, Pinard F, Pioche M, Prost B, Queneherve L, Rebours V, Reboux N, Rekik S, Riachi G, Rohmer B, Roquelaure B, Hezode IR, Rostain F, Saurin JC, Servais L, Stan-Iuga R, Subtil C, Texier C, Thomassin L, Tougeron D, Tsakiris L, Valats JC, Vuitton L, Wallenhorst T, Wangerme M, Zanaldi H, Zerbib F. Classification of PRSS1 variants responsible for chronic pancreatitis: An expert perspective from the Franco-Chinese GREPAN study group. Pancreatology 2023; 23:491-506. [PMID: 37581535 DOI: 10.1016/j.pan.2023.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND PRSS1 was the first reported chronic pancreatitis (CP) gene. The existence of both gain-of-function (GoF) and gain-of-proteotoxicity (GoP) pathological PRSS1 variants, together with the fact that PRSS1 variants have been identified in CP subtypes spanning the range from monogenic to multifactorial, has made the classification of PRSS1 variants very challenging. METHODS All currently reported PRSS1 variants (derived primarily from two databases) were manually reviewed with respect to their clinical genetics, functional analysis and population allele frequency. They were classified by variant type and pathological mechanism within the framework of our recently proposed ACMG/AMP guidelines-based seven-category system. RESULTS The total number of distinct germline PRSS1 variants included for analysis was 100, comprising 3 copy number variants (CNVs), 12 5' and 3' variants, 19 intronic variants, 5 nonsense variants, 1 frameshift deletion variant, 6 synonymous variants, 1 in-frame duplication, 3 gene conversions and 50 missense variants. Based upon a combination of clinical genetic and functional analysis, population data and in silico analysis, we classified 26 variants (all 3 CNVs, the in-frame duplication, all 3 gene conversions and 19 missense) as "pathogenic", 3 variants (missense) as "likely pathogenic", 5 variants (four missense and one promoter) as "predisposing", 13 variants (all missense) as "unknown significance", 2 variants (missense) as "likely benign", and all remaining 51 variants as "benign". CONCLUSIONS We describe an expert classification of the 100 PRSS1 variants reported to date. The results have immediate implications for reclassifying many ClinVar-registered PRSS1 variants as well as providing optimal guidelines/standards for reporting PRSS1 variants.
Collapse
Affiliation(s)
- Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Na Pu
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Vinciane Rebours
- Pancreatology and Digestive Oncology Department, Beaujon Hospital, APHP - Clichy, Université Paris Cité, Paris, France
| | - Emmanuelle Génin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Hao Wu
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jin-Huan Lin
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yuan-Chen Wang
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marc Hervouet
- Hôpital d'instruction des armées Percy, Clamart, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Masson E, Ewers M, Paliwal S, Kume K, Scotet V, Cooper DN, Rebours V, Buscail L, Rouault K, Abrantes A, Aguilera Munoz L, Albouys J, Alric L, Amiot X, Archambeaud I, Audiau S, Bastide L, Baudon J, Bellaiche G, Bellon S, Bertrand V, Bideau K, Billiemaz K, Billioud C, Bonnefoy S, Borderon C, Bournet B, Breton E, Brugel M, Buscail L, Cadiot G, Camus M, Carpentier-Pourquier M, Chamouard P, Chaput U, Chen JM, Cholet F, Ciocan DM, Clavel C, Coffin B, Coimet-Berger L, Cosconea S, Creveaux I, Culetto A, Daboussi O, De Mestier L, Degand T, D'engremont C, Denis B, Dermine S, Drouet D'Aubigny A, Enaud R, Fabre A, Férec C, Gargot D, Gelsi E, Gentilcore E, Gincul R, Ginglinger-Favre E, Giovannini M, Gomercic C, Gondran H, Grainville T, Grandval P, Grasset D, Grimaldi S, Grimbert S, Hagege H, Heissat S, Hentic O, Herber-Mayne A, Hervouet M, Hoibian S, Jacques J, Jais B, Kaassis M, Koch S, Lacaze E, Lacroute J, Lamireau T, Laurent L, Le Guillou X, Le Rhun M, Leblanc S, Levy P, Lievre A, Lorenzo D, Maire F, Marcel K, Masson E, Mauillon J, Morgant S, Moussata D, Muller N, Nambot S, Napoleon B, Olivier A, Pagenault M, Pelletier AL, Pennec O, Pinard F, Pioche M, Prost B, Queneherve L, Rebours V, Reboux N, Rekik S, Riachi G, Rohmer B, Roquelaure B, Rosa Hezode I, Rostain F, Saurin JC, Servais L, Stan-Iuga R, Subtil C, Tanneche J, Texier C, Thomassin L, Tougeron D, Vuitton L, Wallenhorst T, Wangerme M, Zanaldi H, Zerbib F, Bhaskar S, Kikuta K, Rao GV, Hamada S, Reddy DN, Masamune A, Chandak GR, Witt H, Férec C, Chen JM. The PRSS3P2 and TRY7 deletion copy number variant modifies risk for chronic pancreatitis. Pancreatology 2023; 23:48-56. [PMID: 36517351 DOI: 10.1016/j.pan.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND PRSS1 and PRSS2 constitute the only functional copies of a tandemly-arranged five-trypsinogen-gene cluster (i.e., PRSS1, PRSS3P1, PRSS3P2, TRY7 and PRSS2) on chromosome 7q35. Variants in PRSS1 and PRSS2, including missense and copy number variants (CNVs), have been reported to predispose to or protect against chronic pancreatitis (CP). We wondered whether a common trypsinogen pseudogene deletion CNV (that removes two of the three trypsinogen pseudogenes, PRSS3P2 and TRY7) might be associated with CP causation/predisposition. METHODS We analyzed the common PRSS3P2 and TRY7 deletion CNV in a total of 1536 CP patients and 3506 controls from France, Germany, India and Japan by means of quantitative fluorescent multiplex polymerase chain reaction. RESULTS We demonstrated that the deletion CNV variant was associated with a protective effect against CP in the French, German and Japanese cohorts whilst a trend toward the same association was noted in the Indian cohort. Meta-analysis under a dominant model yielded a pooled odds ratio (OR) of 0.68 (95% confidence interval (CI) 0.52-0.89; p = 0.005) whereas an allele-based meta-analysis yielded a pooled OR of 0.84 (95% CI 0.77-0.92; p = 0.0001). This protective effect is explicable by reference to the recent finding that the still functional PRSS3P2/TRY7 pseudogene enhancers upregulate pancreatic PRSS2 expression. CONCLUSIONS The common PRSS3P2 and TRY7 deletion CNV was associated with a reduced risk for CP. This finding provides additional support for the emerging view that dysregulated PRSS2 expression represents a discrete mechanism underlying CP predisposition or protection.
Collapse
Affiliation(s)
- Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Maren Ewers
- Paediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany
| | - Sumit Paliwal
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Kiyoshi Kume
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Virginie Scotet
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Vinciane Rebours
- Pancreatology and Digestive Oncology Department, Beaujon Hospital, APHP - Clichy, Université Paris Cité, Paris, France
| | - Louis Buscail
- Department of Gastroenterology and Pancreatology, CHU Rangueil and University of Toulouse, Toulouse, France
| | - Karen Rouault
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marc Hervouet
- Hôpital d'instruction des Armées Percy, Clamart, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Seema Bhaskar
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Kazuhiro Kikuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Giriraj Ratan Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Heiko Witt
- Paediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Freising, Germany
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France.
| |
Collapse
|
3
|
Wang YC, Zou WB, Tang DH, Wang L, Hu LH, Qian YY, Cooper DN, Férec C, Li ZS, Chen JM, Liao Z. High Clinical and Genetic Similarity Between Chronic Pancreatitis Associated With Light-to-Moderate Alcohol Consumption and Classical Alcoholic Chronic Pancreatitis. GASTRO HEP ADVANCES 2022; 2:186-195. [PMID: 39132611 PMCID: PMC11308850 DOI: 10.1016/j.gastha.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Heavy alcohol consumption and genetic factors represent the 2 major etiologies of chronic pancreatitis (CP). However, little is so far known about the clinical features and genetic basis of light-to-moderate alcohol consumption-related CP (LMA-CP). Methods A cross-sectional analysis was performed on 1061 Chinese CP patients between 2010 and 2015. CP was classified as classical alcoholic CP (ACP; n = 206), LMA-CP (n = 154), and idiopathic CP (ICP; n = 701). Clinical features and genetic characteristics (PRSS1, SPINK1, CTRC, CFTR variant status) were compared between the different groups. Odds ratios (ORs) with 95% confidence intervals were calculated to ascertain the combinatorial effect of alcohol consumption and gene mutation. Results Compared with ICP, the clinical features of LMA-CP were characterized by higher rates of developing pancreatic stones, pseudocyst, diabetes, and steatorrhea, which were similar to those associated with ACP. The prevalence of CP-related gene variants in LMA-CP was 38.3%, similar to ACP (39.8%), although significantly lower than ICP (56.2%). Alcohol consumption enhanced the risk of a poor clinical outcome, whereas genetic factors amplified alcohol's effects. Compared with ICP, LMA-CP and ACP were associated with a high risk of pancreatic stones (patients without variants, OR = 2.01 and 2.54; patients with variants, OR = 2.17 and 1.07), pseudocyst (patients without variants, OR = 1.03 and 1.43; patients with variants, OR = 1.67 and 2.14), diabetes mellitus (patients without variants, OR = 0.86 and 1.31; patients with variants, OR = 2.05 and 1.55), and steatorrhea (patients without variants, OR = 1.56 and 2.10; patients with variants, OR = 2.11 and 1.60). Conclusion Evidence was presented to show that LMA-CP was clinically and genetically similar to ACP but significantly different from ICP. Our findings provide support to the growing view that there is no safe level of alcohol consumption.
Collapse
Affiliation(s)
- Yuan-Chen Wang
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Da-Hai Tang
- Department of Laboratory Diagnostics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Wang
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Liang-Hao Hu
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yang-Yang Qian
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Claude Férec
- EFS, Univ Brest, Inserm, UMR 1078, GGB, Brest, France
| | - Zhao-Shen Li
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- EFS, Univ Brest, Inserm, UMR 1078, GGB, Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| |
Collapse
|
4
|
Masson E, Zou WB, Génin E, Cooper DN, Le Gac G, Fichou Y, Pu N, Rebours V, Férec C, Liao Z, Chen JM. Expanding ACMG variant classification guidelines into a general framework. Hum Genomics 2022; 16:31. [PMID: 35974416 PMCID: PMC9380380 DOI: 10.1186/s40246-022-00407-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The American College of Medical Genetics and Genomics (ACMG)-recommended five variant classification categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign) have been widely used in medical genetics. However, these guidelines are fundamentally constrained in practice owing to their focus upon Mendelian disease genes and their dichotomous classification of variants as being either causal or not. Herein, we attempt to expand the ACMG guidelines into a general variant classification framework that takes into account not only the continuum of clinical phenotypes, but also the continuum of the variants' genetic effects, and the different pathological roles of the implicated genes. MAIN BODY As a disease model, we employed chronic pancreatitis (CP), which manifests clinically as a spectrum from monogenic to multifactorial. Bearing in mind that any general conceptual proposal should be based upon sound data, we focused our analysis on the four most extensively studied CP genes, PRSS1, CFTR, SPINK1 and CTRC. Based upon several cross-gene and cross-variant comparisons, we first assigned the different genes to two distinct categories in terms of disease causation: CP-causing (PRSS1 and SPINK1) and CP-predisposing (CFTR and CTRC). We then employed two new classificatory categories, "predisposing" and "likely predisposing", to replace ACMG's "pathogenic" and "likely pathogenic" categories in the context of CP-predisposing genes, thereby classifying all pathologically relevant variants in these genes as "predisposing". In the case of CP-causing genes, the two new classificatory categories served to extend the five ACMG categories whilst two thresholds (allele frequency and functional) were introduced to discriminate "pathogenic" from "predisposing" variants. CONCLUSION Employing CP as a disease model, we expand ACMG guidelines into a five-category classification system (predisposing, likely predisposing, uncertain significance, likely benign, and benign) and a seven-category classification system (pathogenic, likely pathogenic, predisposing, likely predisposing, uncertain significance, likely benign, and benign) in the context of disease-predisposing and disease-causing genes, respectively. Taken together, the two systems constitute a general variant classification framework that, in principle, should span the entire spectrum of variants in any disease-related gene. The maximal compliance of our five-category and seven-category classification systems with the ACMG guidelines ought to facilitate their practical application.
Collapse
Affiliation(s)
- Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 22 Avenue Camille Desmoulins, F-29200, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Emmanuelle Génin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 22 Avenue Camille Desmoulins, F-29200, Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Gerald Le Gac
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 22 Avenue Camille Desmoulins, F-29200, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Yann Fichou
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 22 Avenue Camille Desmoulins, F-29200, Brest, France
| | - Na Pu
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 22 Avenue Camille Desmoulins, F-29200, Brest, France.,Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Vinciane Rebours
- Department of Gastroenterology and Pancreatology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, Université de Paris, Paris, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 22 Avenue Camille Desmoulins, F-29200, Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 22 Avenue Camille Desmoulins, F-29200, Brest, France.
| |
Collapse
|
5
|
Risk of chronic pancreatitis in carriers of loss-of-function CTRC variants: A meta-analysis. PLoS One 2022; 17:e0268859. [PMID: 35594281 PMCID: PMC9122191 DOI: 10.1371/journal.pone.0268859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
The digestive protease chymotrypsin C (CTRC) protects the pancreas against pancreatitis by degrading potentially harmful trypsinogen. Loss-of-function genetic variants in CTRC increase risk for chronic pancreatitis (CP) with variable effect size, as judged by the reported odds ratio (OR) values. Here, we performed a meta-analysis of published studies on four variants that alter the CTRC amino-acid sequence, are clinically relatively common (global carrier frequency in CP >1%), reproducibly showed association with CP and their loss of function phenotype was verified experimentally. We found strong enrichment of CTRC variants p.A73T, p.V235I, p.K247_R254del, and p.R245W in CP cases versus controls, yielding OR values of 6.5 (95% confidence interval (CI) 2.4–17.8), 4.5 (CI 2.2–9.1), 5.4 (CI 2.6–11.0), and 2.6 (CI 1.6–4.2), respectively. Subgroup analysis demonstrated disease association of variants p.K247_R254del and p.R245W in alcoholic CP with similar effect sizes as seen in the overall CP group. Homozygosity or compound heterozygosity were rare and seemed to be associated with higher risk. We also identified a so far unreported linkage disequilibrium between variant p.K247_R254del and the common c.180C>T (p.G60 =) haplotype. Taken together, the results indicate that heterozygous loss-of-function CTRC variants increase the risk for CP approximately 3-7-fold. This meta-analysis confirms the clinical significance of CTRC variants and provides further justification for the genetic screening of CP patients.
Collapse
|
6
|
Zou WB, Cooper DN, Masson E, Pu N, Liao Z, Férec C, Chen JM. Trypsinogen (PRSS1 and PRSS2) gene dosage correlates with pancreatitis risk across genetic and transgenic studies: a systematic review and re-analysis. Hum Genet 2022; 141:1327-1338. [PMID: 35089416 DOI: 10.1007/s00439-022-02436-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/15/2022] [Indexed: 12/22/2022]
Abstract
Trypsinogen (PRSS1, PRSS2) copy number gains and regulatory variants have both been proposed to elevate pancreatitis risk through a gene dosage effect (i.e., by increasing the expression of wild-type protein). However, to date, their impact on pancreatitis risk has not been thoroughly evaluated whilst the underlying pathogenic mechanisms remain to be explicitly investigated in mouse models. Genetic studies of the rare trypsinogen duplication and triplication copy number variants (CNVs), and the common rs10273639C variant, were collated from PubMed and/or ClinVar. Mouse studies that analyzed the influence of a transgenically expressed wild-type human PRSS1 or PRSS2 gene on the development of pancreatitis were identified from PubMed. The genetic effects of the different risk genotypes, in terms of odds ratios, were calculated wherever appropriate. The genetic effects of the rare trypsinogen duplication and triplication CNVs were also evaluated by reference to their associated disease subtypes. We demonstrate a positive correlation between increased trypsinogen gene dosage and pancreatitis risk in the context of the rare duplication and triplication CNVs, and between the level of trypsinogen expression and disease risk in the context of the heterozygous and homozygous rs10273639C-tagged genotypes. We retrospectively identify three mouse transgenic studies that are informative in relation to the pathogenic mechanism underlying the trypsinogen gene dosage effect in pancreatitis. Trypsinogen gene dosage correlates with pancreatitis risk across genetic and transgenic studies, highlighting the fundamental role of dysregulated expression of wild-type trypsinogen in the etiology of pancreatitis. Specifically downregulating trypsinogen expression in the pancreas may serve as a potential therapeutic and/or prevention strategy for pancreatitis.
Collapse
Affiliation(s)
- Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
- Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Na Pu
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
- Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France.
- INSERM UMR1078, EFS, UBO, 22 avenue Camille Desmoulins, Brest, France.
| |
Collapse
|
7
|
Hamada S, Masson E, Chen JM, Sakaguchi R, Rebours V, Buscail L, Matsumoto R, Tanaka Y, Kikuta K, Kataoka F, Sasaki A, Le Rhun M, Audin H, Lachaux A, Caumont B, Lorenzo D, Billiemaz K, Besnard R, Koch S, Lamireau T, De Koninck X, Génin E, Cooper DN, Mori Y, Masamune A, Férec C. Functionally deficient TRPV6 variants contribute to hereditary and familial chronic pancreatitis. Hum Mutat 2021; 43:228-239. [PMID: 34923708 DOI: 10.1002/humu.24315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The recent discovery of TRPV6 as a pancreatitis susceptibility gene served to identify a novel mechanism of chronic pancreatitis (CP) due to Ca2+ dysregulation. Herein, we analyzed TRPV6 in 81 probands with hereditary CP (HCP), 204 probands with familial CP (FCP), and 462 patients with idiopathic CP (ICP) by targeted next-generation sequencing. We identified 25 rare nonsynonymous TRPV6 variants, 18 of which had not been previously reported. All 18 variants were characterized by a Ca2+ imaging assay, with 8 being identified as functionally deficient. Evaluation of functionally deficient variants in the three CP cohorts revealed two novel findings: (i) functionally deficient TRPV6 variants appear to occur more frequently in HCP/FCP patients than in ICP patients (3.2% vs. 1.5%) and (ii) functionally deficient TRPV6 variants found in HCP and FCP probands appear to be more frequently coinherited with known risk variants in SPINK1, CTRC, and/or CFTR than those found in ICP patients (66.7% vs 28.6%). Additionally, genetic analysis of available HCP and FCP family members revealed complex patterns of inheritance in some families. Our findings confirm that functionally deficient TRPV6 variants represent an important contributor to CP. Importantly, functionally deficient TRPV6 variants account for a significant proportion of cases of HCP/FCP.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Vinciane Rebours
- Department of Gastroenterology and Pancreatology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, Université de Paris, Paris, France
| | - Louis Buscail
- Department of Gastroenterology and Pancreatology, CHU Rangueil and University of Toulouse, Toulouse, France
| | - Ryotaro Matsumoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Tanaka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Kikuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiya Kataoka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Sasaki
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Marc Le Rhun
- Service d'Hépato-Gastroentérologie et Assistance Nutritionnelle, Institut des Maladies de l'Appareil Digestif (IMAD), Centre Hospitalo-Universitaire (CHU), Nantes, France
| | - Hela Audin
- Médecine 'Chauvet' à Orientation Gastro-Entérologique, CH Gabriel Martin, Saint Paul, France
| | - Alain Lachaux
- Hospices Civils de Lyon, Department of Pediatric Hepato-Gastroenterology Hôpital Femme Mere Enfant and Lyon 1 University, Faculty of Medicine Lyon East, France
| | - Bernard Caumont
- Service de Médecine à Orientation Hépato-Gastro-Entérologique, CH Sud Gironde, Langon, France
| | - Diane Lorenzo
- Department of Digestive Endoscopy, Beaujon Hospital, APHP, Clichy, and Paris-Diderot University, Paris, France
| | - Kareen Billiemaz
- Service de Réanimation Pédiatrique, CHU-Hôpital Nord, Saint-Étienne, France
| | - Raphael Besnard
- Service d'Hépato-Gastro-Entérologie et Oncologie Digestive, CHR Orléans, Orléans, France
| | - Stéphane Koch
- Department of Gastroenterology, University Hospital of Besançon, Besançon, France
| | - Thierry Lamireau
- Pediatric Hepatology and Gastroenterology Unit, Bordeaux University Hospital, Pellegrin-Enfants Hospital, Bordeaux, France
| | - Xavier De Koninck
- Division of Gastroenterology, Clinique Saint-Pierre, Ottignies, Belgium
| | | | | | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| |
Collapse
|
8
|
Chronic Pancreatitis: The True Pathogenic Culprit within the SPINK1 N34S-Containing Haplotype Is No Longer at Large. Genes (Basel) 2021; 12:genes12111683. [PMID: 34828289 PMCID: PMC8619230 DOI: 10.3390/genes12111683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022] Open
Abstract
A diverse range of loss-of-function variants in the SPINK1 gene (encoding pancreatic secretory trypsin inhibitor) has been identified in patients with chronic pancreatitis (CP). The haplotype harboring the SPINK1 c.101A>G (p.Asn34Ser or N34S) variant (rs17107315:T>C) is one of the most important heritable risk factors for CP as a consequence of its relatively high prevalence worldwide (population allele frequency ≈ 1%) and its considerable effect size (odds ratio ≈ 11). The causal variant responsible for this haplotype has been intensively investigated over the past two decades. The different hypotheses tested addressed whether the N34S missense variant has a direct impact on enzyme structure and function, whether c.101A>G could affect pre-mRNA splicing or mRNA stability, and whether another variant in linkage disequilibrium with c.101A>G might be responsible for the observed association with CP. Having reviewed the currently available genetic and experimental data, we conclude that c.-4141G>T (rs142703147:C>A), which disrupts a PTF1L-binding site within an evolutionarily conserved HNF1A-PTF1L cis-regulatory module located ∼4 kb upstream of the SPINK1 promoter, can be designated as the causal variant beyond reasonable doubt. This case illustrates the difficulties inherent in determining the identity of the causal variant underlying an initially identified disease association.
Collapse
|