1
|
Karaca Dogan B, Salman Yilmaz S, Izgi GN, Ozen M. Circulating non-coding RNAs as a tool for liquid biopsy in solid tumors. Epigenomics 2025; 17:335-358. [PMID: 40040488 DOI: 10.1080/17501911.2025.2467021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Solid tumors are significant causes of global mortality and morbidity. Recent research has primarily concentrated on finding pathology-specific molecules that can be acquired non-invasively and that can change as the disease progresses or in response to treatment. The focus of research has moved to RNA molecules that are either freely circulating in body fluids or bundled in microvesicles and exosomes because of their great stability in challenging environments, ease of accessibility, and changes in level in response to therapy. In this context, there are many non-coding RNAs that can be used for this purpose in liquid biopsies. Out of these, microRNAs have been extensively studied. However, there has been an increase of interest in studying long non-coding RNAs, piwi interacting RNAs, circular RNAs, and other small non-coding RNAs. In this article, an overview of the most researched circulating non-coding RNAs in solid tumors will be reviewed, along with a discussion of the significance of these molecules for early diagnosis, prognosis, and therapeutic targets. The publications analyzed were extracted from the PubMed database between 2008 and June 2024.
Collapse
Affiliation(s)
- Beyza Karaca Dogan
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Seda Salman Yilmaz
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
- Department of Medical Services and Techniques Medical Monitoring Techniques Pr. Vocational School of Health Services, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Gizem Nur Izgi
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Mustafa Ozen
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Huang XY, Chen SX, Wang ZY, Lu YS, Liu CT, Chen SZ. PIWI-interacting RNA biomarkers in gastrointestinal disease. Clin Chim Acta 2025; 569:120182. [PMID: 39920958 DOI: 10.1016/j.cca.2025.120182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Detection and diagnosis of neoplastic and inflammatory gastrointestinal (GI) diseases are typically based on endoscopic and pathologic examination. In GI neoplastic diseases, diagnosis can be delayed due to the expense and invasive nature of this approach. Recently, PIWI-interacting RNAs (piRNAs), a group of small non-coding RNA molecules containing 24-31 nucleotides, have been thought to serve as biomarkers in many disease processes. For example, piRNAs are differentially expressed in GI cancer but their biologic role remains unclear. Using next-generation sequencing and microarray analyses, researchers have suggested that monitoring piRNAs could facilitate diagnosis and prognosis in GI disease. Herein, we reviewed the use of piRNAs in neoplastic, inflammatory, functional, and other diseases of the digestive system, which could shed new light on cancer screening, early detection, and personalized treatment.
Collapse
Affiliation(s)
- Xin-Yi Huang
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Shu-Xian Chen
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Zhen-Yu Wang
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Yong-Sheng Lu
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Can-Tong Liu
- Department of Clinical Laboratory Medicine, Esophageal Cancer Prevention and Control Research Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Su-Zuan Chen
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
3
|
Taghizadeh-Teymorloei M, Jafarlou V, Matin S, Raeisi M, Roosta Y, Mansouri-Derakhshani S, Feizi AAH, Karimi A. Clinical implications of Alu-based cell-free DNA and serum onco-piRNA monitoring in colorectal cancer management. Clin Transl Oncol 2025:10.1007/s12094-025-03863-8. [PMID: 39969763 DOI: 10.1007/s12094-025-03863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) remains a significant global health challenge, characterized by high morbidity and mortality rates. This study explores the potential of Alu-based cell-free DNA (cfDNA) and specific PIWI-interacting RNAs (piRNAs) as innovative biomarkers for monitoring treatment responses in CRC patients. METHODS We analyzed plasma samples from 70 CRC patients, equally divided between those undergoing chemotherapy and surgical interventions. RESULTS Our findings reveal that certain piRNAs, particularly piRNA-823, piRNA-54265, and piRNA-1245, exhibit significant prognostic value, with notable expression changes observed in the chemotherapy group compared to the surgery group. Furthermore, the levels of ALU-based cfDNA fragments showed a marked decrease post-chemotherapy, suggesting their utility in assessing therapeutic efficacy. CONCLUSIONS This research underscores the importance of integrating these molecular tools particularly piRNA-823 and ALU-based cfDNA into clinical practice, potentially enhancing the management strategies for CRC patients and improving their outcomes.
Collapse
Affiliation(s)
- Mohammad Taghizadeh-Teymorloei
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht St., Tabriz, 5166614756, East Azerbaijan, Iran
| | - Vahid Jafarlou
- Cancer Institute of Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Somaieh Matin
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Roosta
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sima Mansouri-Derakhshani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran
| | - Abbas Ali Hosseinpour Feizi
- Hematology-Oncology Research Center, Tabriz University of Medical Sciences, Tabriz Children's Hospital, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht St., Tabriz, 5166614756, East Azerbaijan, Iran.
| |
Collapse
|
4
|
Shaker FH, Sanad EF, Elghazaly H, Hsia SM, Hamdy NM. piR-823 tale as emerging cancer-hallmark molecular marker in different cancer types: a step-toward ncRNA-precision. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:47-68. [PMID: 39102033 PMCID: PMC11787197 DOI: 10.1007/s00210-024-03308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
PIWI-interacting RNAs (piRNAs) have received a lot of attention for their functions in cancer research. This class of short non-coding RNAs (ncRNA) has roles in genomic stability, chromatin remodeling, messenger RNA (mRNA) integrity, and genome structure. We summarized the mechanisms underlying the biogenesis and regulatory molecular functions of piRNAs. Among all piRNAs studied in cancer, this review offers a comprehensive analysis of the emerging roles of piR-823 in various types of cancer, including colorectal, gastric, liver, breast, and renal cancers, as well as multiple myeloma. piR-823 has emerged as a crucial modulator of various cancer hallmarks through regulating multiple pathways. In the current review, we analyzed several databases and conducted an extensive literature search to explore the influence of piR-823 in carcinogenesis in addition to describing the potential application of piR-823 as prognostic and diagnostic markers as well as the therapeutic potential toward ncRNA precision.
Collapse
Affiliation(s)
- Fatma H Shaker
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Eman F Sanad
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Hesham Elghazaly
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Shih-Min Hsia
- School of Food and Safety, Nutrition Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 110301, Taiwan
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt.
| |
Collapse
|
5
|
Guo H, Zhang L, Cui X, Cheng L, Zhao T, Wang Y. SCancerRNA: Expression at the Single-cell Level and Interaction Resource of Non-coding RNA Biomarkers for Cancers. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae023. [PMID: 39341795 DOI: 10.1093/gpbjnl/qzae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 10/01/2024]
Abstract
Non-coding RNAs (ncRNAs) participate in multiple biological processes associated with cancers as tumor suppressors or oncogenic drivers. Due to their high stability in plasma, urine, and many other fluids, ncRNAs have the potential to serve as key biomarkers for early diagnosis and screening of cancers. During cancer progression, tumor heterogeneity plays a crucial role, and it is particularly important to understand the gene expression patterns of individual cells. With the development of single-cell RNA sequencing (scRNA-seq) technologies, uncovering gene expression in different cell types for human cancers has become feasible by profiling transcriptomes at the cellular level. However, a well-organized and comprehensive online resource that provides access to the expression of genes corresponding to ncRNA biomarkers in different cell types at the single-cell level is not available yet. Therefore, we developed the SCancerRNA database to summarize experimentally supported data on long ncRNA, microRNA, PIWI-interacting RNA, small nucleolar RNA, and circular RNA biomarkers, as well as data on their differential expression at the cellular level. Furthermore, we collected biological functions and clinical applications of biomarkers to facilitate the application of ncRNA biomarkers to cancer diagnosis, as well as the monitoring of progression and targeted therapies. SCancerRNA also allows users to explore interaction networks of different types of ncRNAs, and build computational models in the future. SCancerRNA is freely accessible at http://www.scancerrna.com/BioMarker.
Collapse
Affiliation(s)
- Hongzhe Guo
- Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Liyuan Zhang
- Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Xinran Cui
- Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China
| | - Tianyi Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Yadong Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
6
|
Li B, Wang K, Cheng W, Fang B, Li YH, Yang SM, Zhang MH, Wang YH, Wang K. Recent advances of PIWI-interacting RNA in cardiovascular diseases. Clin Transl Med 2024; 14:e1770. [PMID: 39083321 PMCID: PMC11290350 DOI: 10.1002/ctm2.1770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The relationship between noncoding RNAs (ncRNAs) and human diseases has been a hot topic of research, but the study of ncRNAs in cardiovascular diseases (CVDs) is still in its infancy. PIWI-interacting RNA (piRNA), a small ncRNA that binds to the PIWI protein to maintain genome stability by silencing transposons, was widely studied in germ lines and stem cells. In recent years, piRNA has been shown to be involved in key events of multiple CVDs through various epigenetic modifications, revealing the potential value of piRNA as a new biomarker or therapeutic target. CONCLUSION This review explores origin, degradation, function, mechanism and important role of piRNA in CVDs, and the promising therapeutic targets of piRNA were summarized. This review provide a new strategy for the treatment of CVDs and lay a theoretical foundation for future research. KEY POINTS piRNA can be used as a potential therapeutic target and biomaker in CVDs. piRNA influences apoptosis, inflammation and angiogenesis by regulating epigenetic modificaions. Critical knowledge gaps remain in the unifying piRNA nomenclature and PIWI-independent function.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of ChinaShandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao UniversityJinanShandongChina
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Kai Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Wei Cheng
- Department of Cardiovascular SurgeryBeijing Children's Hospital, Capital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Bo Fang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Ying Hui Li
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Su Min Yang
- Department of Cardiovascular SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Mei Hua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of ChinaShandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao UniversityJinanShandongChina
| | - Yun Hong Wang
- Hypertension CenterBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of ChinaShandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao UniversityJinanShandongChina
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| |
Collapse
|
7
|
Li Y, Wang K, Liu W, Zhang Y. The potential emerging role of piRNA/PIWI complex in virus infection. Virus Genes 2024; 60:333-346. [PMID: 38833149 DOI: 10.1007/s11262-024-02078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
P-element-induced wimpy testis-interacting RNAs (piRNAs), a class of small noncoding RNAs with about 24-32 nucleotides, often interact with PIWI proteins to form a piRNA/PIWI complex that could influence spermiogenesis, transposon silencing, epigenetic regulation, etc. PIWI proteins have a highly conserved function in a variety of species and are usually expressed in germ cells. However, increasing evidence has revealed the important role of the piRNA/PIWI complex in the occurrence and prognosis of various human diseases and suggests its potential application in the diagnosis and treatment of related diseases, becoming a prominent marker for these human diseases. Recent studies have confirmed that piRNA/PIWI complexes or piRNAs are abnormally expressed in some viral infections, effecting disease progression and viral replication. In this study, we reviewed the association between the piRNA/PIWI complex and several human disease-associated viruses, including human papillomavirus, human immunodeficiency virus, human rhinovirus, severe acute respiratory syndrome coronavirus 2, respiratory syncytial virus, and herpes simplex virus type 1.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China
| | - Kai Wang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Yan Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China.
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
8
|
Deng X, Liao T, Xie J, Kang D, He Y, Sun Y, Wang Z, Jiang Y, Miao X, Yan Y, Tang H, Zhu L, Zou Y, Liu P. The burgeoning importance of PIWI-interacting RNAs in cancer progression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:653-662. [PMID: 38198029 DOI: 10.1007/s11427-023-2491-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNA molecules that specifically bind to piwi protein family members to exert regulatory functions in germ cells. Recent studies have found that piRNAs, as tissue-specific molecules, both play oncogenic and tumor suppressive roles in cancer progression, including cancer cell proliferation, metastasis, chemoresistance and stemness. Additionally, the atypical manifestation of piRNAs and PIWI proteins in various malignancies presents a promising strategy for the identification of novel biomarkers and therapeutic targets in the diagnosis and management of tumors. Nonetheless, the precise functions of piRNAs in cancer progression and their underlying mechanisms have yet to be fully comprehended. This review aims to examine current research on the biogenesis and functions of piRNA and its burgeoning importance in cancer progression, thereby offering novel perspectives on the potential utilization of piRNAs and piwi proteins in the management and treatment of advanced cancer.
Collapse
Affiliation(s)
- Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tianle Liao
- School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Da Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yiwei He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuying Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhangling Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yongluo Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xuan Miao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yixuan Yan
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lewei Zhu
- The First People's Hospital of Foshan, Foshan, 528000, China.
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Peng Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Garcia-Borja E, Siegl F, Mateu R, Slaby O, Sedo A, Busek P, Sana J. Critical appraisal of the piRNA-PIWI axis in cancer and cancer stem cells. Biomark Res 2024; 12:15. [PMID: 38303021 PMCID: PMC10836005 DOI: 10.1186/s40364-024-00563-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Small noncoding RNAs play an important role in various disease states, including cancer. PIWI proteins, a subfamily of Argonaute proteins, and PIWI-interacting RNAs (piRNAs) were originally described as germline-specific molecules that inhibit the deleterious activity of transposable elements. However, several studies have suggested a role for the piRNA-PIWI axis in somatic cells, including somatic stem cells. Dysregulated expression of piRNAs and PIWI proteins in human tumors implies that, analogously to their roles in undifferentiated cells under physiological conditions, these molecules may be important for cancer stem cells and thus contribute to cancer progression. We provide an overview of piRNA biogenesis and critically review the evidence for the role of piRNA-PIWI axis in cancer stem cells. In addition, we examine the potential of piRNAs and PIWI proteins to become biomarkers in cancer.
Collapse
Affiliation(s)
- Elena Garcia-Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Frantisek Siegl
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Rosana Mateu
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic.
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
- Department of Pathology, University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
10
|
Nagainallur Ravichandran S, Das D, Dayananda EK, Dey A, Banerjee A, Sun-Zhang A, Zhang H, Sun XF, Pathak S. A Review on Emerging Techniques for Diagnosis of Colorectal Cancer. Cancer Invest 2024; 42:119-140. [PMID: 38404236 DOI: 10.1080/07357907.2024.2315443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Common detection methods in practice for diagnosing colorectal cancer (CRC) are painful and invasive leading to less participation of individuals for CRC diagnosis. Whereas, improved or enhanced imaging systems and other minimally invasive techniques with shorter detection times deliver greater detail and less discomfort in individuals. Thus, this review is a summary of the diagnostic tests, ranging from the simple potential use in developing a flexible CRC treatment to the patient's potential benefits in receiving less invasive procedures and the advanced treatments that might provide a better assessment for the diagnosis of CRC and reduce the mortality related to CRC.
Collapse
Affiliation(s)
- Shruthi Nagainallur Ravichandran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Erica Katriel Dayananda
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Amit Dey
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Alexander Sun-Zhang
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Hong Zhang
- Faculty of Medicine and Health, School of Medical Sciences, Orebro University, Örebro, Sweden
| | - Xiao-Feng Sun
- Division of Oncology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| |
Collapse
|
11
|
Hammad G, Mamdouh S, Seoudi DM, Seleem MI, Safwat G, Mohamed RH. Elevated expression patterns of P-element Induced Wimpy Testis (PIWI) transcripts are potential candidate markers for Hepatocellular Carcinoma. Cancer Biomark 2024; 39:95-111. [PMID: 38043006 PMCID: PMC11002723 DOI: 10.3233/cbm-230134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/25/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND P-Element-induced wimpy testis (PIWI) proteins, when in combination with PIWI-interacting RNA (piRNA), are engaged in the epigenetic regulation of gene expression in germline cells. Different types of tumour cells have been found to exhibit abnormal expression of piRNA, PIWIL-mRNAs, and proteins. We aimed to determine the mRNA expression profiles of PIWIL1, PIWIL2, PIWIL3, & PIWIL4, in hepatocellular carcinoma patients, and to associate their expression patterns with clinicopathological features. METHODS The expression patterns of PIWIL1, PIWIL2, PIWIL3, PIWIL4 mRNA, was assessed via real-time quantitative polymerase chain reaction (RT-QPCR), on tissue and serum samples from HCC patients, their impact for diagnosis was evaluated by ROC curves, prognostic utility was determined, and In Silico analysis was conducted for predicted variant detection, association with HCC microRNAs and Network Analysis. RESULTS Expression levels were significantly higher in both HCC tissue and serum samples than in their respective controls (p< 0.001). Additionally, the diagnostic performance was assessed, Risk determination was found to be statistically significant. CONCLUSION PIWIL mRNAs are overexpressed in HCC tissue and serum samples, the expression patterns could be valuable molecular markers for HCC, due to their association with age, tumour grade and pattern. To the best of our knowledge, our study is the first to report the expression levels of all PIWIL mRNA and to suggest their remarkable values as diagnostic and prognostic biomarkers, in addition to their correlation to HCC development. Additionally, a therapeutic opportunity might be also suggested through in silico miRNA prediction for HCC and PIWIL genes through DDX4 and miR-124-3p.
Collapse
Affiliation(s)
- Gehan Hammad
- Faculty of Biotechnology, October University for Modern Sciences & Arts (MSA), Giza, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Samah Mamdouh
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Dina Mohamed Seoudi
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Ismail Seleem
- Department of Surgery, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences & Arts (MSA), Giza, Egypt
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Mohammadpour S, Noukabadi FN, Esfahani AT, Kazemi F, Esmaeili S, Zafarjafarzadeh N, Sarpash S, Nazemalhosseini-Mojarad E. Non-coding RNAs in Precursor Lesions of Colorectal Cancer: Their Role in Cancer Initiation and Formation. Curr Mol Med 2024; 24:565-575. [PMID: 37226783 DOI: 10.2174/1566524023666230523155719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/26/2023]
Abstract
Colorectal cancer (CRC) is one of the world's most common types of malignancy. The proliferation of precancerous lesions causes this type of cancer. Two distinct pathways for CRC carcinogenesis have been identified: the conventional adenoma-carcinoma pathway and the serrated neoplasia pathway. Recently, evidence has demonstrated the regulatory roles of noncoding RNAs (ncRNAs) in the initiation and progression of precancerous lesions, especially in the adenoma-carcinoma pathway and serrated neoplasia pathway. By expanding the science of molecular genetics and bioinformatics, several studies have identified dysregulated ncRNAs that function as oncogenes or tumor suppressors in cancer initiation and formation by diverse mechanisms via intracellular signaling pathways known to act on tumor cells. However, many of their roles are still unclear. This review summarizes the functions and mechanisms of ncRNAs (such as long non-coding RNAs, microRNAs, long intergenic non-coding RNAs, small interfering RNAs, and circRNAs) in the initiation and formation of precancerous lesions.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Fatemeh Naderi Noukabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Fatemeh Kazemi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Sahar Esmaeili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Sohn EJ, Han ME, Park YM, Kim YH, Oh SO. The potential of piR-823 as a diagnostic biomarker in oncology: A systematic review. PLoS One 2023; 18:e0294685. [PMID: 38060527 PMCID: PMC10703285 DOI: 10.1371/journal.pone.0294685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Emerging evidence has demonstrated that PIWI-interacting RNAs (piRNAs) play important roles in various physiological processes and contribute to cancer progression. Moreover, piRNAs and PIWI protein levels are associated with the prognosis and chemoresistance of various cancers. The limitations of biomarkers challenge early detection and monitoring of chemoresistance and cancer relapse. METHODS To evaluate the potential of piRNA as a diagnostic biomarker in oncology, we systematically reviewed previous studies on the subject. PubMed, Embase, and Cochrane databases were searched to evaluate the diagnostic relevance of piRNAs in cancer. Eighteen studies (2,352 patients) were included. The quality of each study was evaluated with AMSTAR and QUADAS-2 tool. RESULTS & CONCLUSIONS The area under the curve (AUC) values of 26 piRNAs in patients with cancer ranged from 0.624 to 0.978, with piR-9491 showing the highest value (0.978). The sensitivity of the total of 21 piRNAs in cancer patients was between 42.86 and 100, with piR-9491 showing the highest sensitivity (100). The specificity of these 21 piRNAs ranged from 60.10 to 96.67 (with piR-018569 showing the highest specificity (96.67)). Their odds ratios were between 1.61 and 44.67, and piR-12488 showed the highest odds ratio (44.67). Generally, the piRNAs in this review showed better sensitivity and AUC values than current clinical diagnostic biomarkers, although current biomarkers appear to be more specific. Reviewed piRNAs showed better diagnostic performance than currently used clinical biomarkers. Notably, piR-823 showed a significant diagnostic performance in four types of cancer (colorectal, esophageal, gastric, and renal cell cancer). However, all 18 studies included in this review were a case-control study. So, further prospective studies are required for their validation.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Myoung-Eun Han
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Young Mok Park
- Department of Surgery, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
14
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
15
|
Zhang Z, Liu N. PIWI interacting RNA-13643 contributes to papillary thyroid cancer development through acting as a novel oncogene by facilitating PRMT1 mediated GLI1 methylation. Biochim Biophys Acta Gen Subj 2023; 1867:130453. [PMID: 37657666 DOI: 10.1016/j.bbagen.2023.130453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Recently, aberrant expression of PIWI-interacting RNAs (piRNAs) has been discovered in a variety of cancer cells. However, the roles of PIWI proteins and piRNAs in papillary thyroid carcinoma (PTC) are still elusive. METHODS RT-qPCR and Northern blotting were used to evaluate piR-13643 levels in PTC and para-carcinoma tissues, as well as in PTC cell lines. piR-13643 mimic and piR-13643 inhibitor were transfected into K-1 and B-CPAP cells. CCK-8, Transwell, annexin V-FITC/PI, flow cytometry and Western blot assays were performed to measure cell proliferation, invasion, apoptosis, cell cycle and E-cadherin and Vimentin proteins, respectively. Total RNA from B-CPAP cells was pulled down with PIWIL1, PIWIL2, or PIWIL3 specific antibodies or IgG as a control, respectively, followed by detection of piR-13643 expression with RT-qPCR. Immunoblotting of PRMT1 was detected in piR-13643 / PIWIL1 complex immune-precipitates by Co-IP assay. Subsequently, PRMT1 protein expression was detected by stably transfection of Flag tagged GLI1 (Flag-GLI1) into B-CPAP cells. Methylation assay with PRMT1 and wild-type or R597 lysine (R597K)-mutant GLI1. Then rescue experiments were applied to explore effects of piR-13643 and GLI1 on the malignant behavior of PTC cells. B-CPAP cells transfected with piR-13643 inhibitor were subcutaneously injected into nude mice to evaluate the effect of piR-13643 knockdown on the xenograft tumor growth of PTC. RESULTS piR-13643 was elevated in PTC patient specimens and cell lines. piR-13643 overexpression facilitated cell proliferation, invasion and Vimentin level, and restrained apoptosis and E-cadherin expression, whereas piR-13643 knockdown showed the opposite results. Mechanically, piR-13643 could bind to PIWIL1 to form the PIWIL1/piR-13643 complex, and PRMT1 enhanced GLI1 transcription by methylating GLI1 at R597. Further, PIWIL1/piR-13643 promoted PRMT1-mediated GLI1 methylation. GLI1 knockdown countered the effects of piR-13643 mimic on cell malignant behaviors. piR-13643 knockdown preeminently prevented the xenograft tumor growth of PTC in vivo. CONCLUSIONS This study confirmed that piR-13643 facilitates PTC malignant behaviors in vitro and in vivo by promoting PRMT1-mediated GLI1 methylation via forming a complex with PIWIL1, which may provide a novel insight for PTC treatment.
Collapse
Affiliation(s)
- Zhongbo Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ning Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
16
|
Xing S, Zhu Y, You Y, Wang S, Wang H, Ning M, Jin H, Liu Z, Zhang X, Yu C, Lu ZJ. Cell-free RNA for the liquid biopsy of gastrointestinal cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1791. [PMID: 37086051 DOI: 10.1002/wrna.1791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Gastrointestinal (GI) cancer includes many cancer types, such as esophageal, liver, gastric, pancreatic, and colorectal cancer. As the cornerstone of personalized medicine for GI cancer, liquid biopsy based on noninvasive biomarkers provides promising opportunities for early diagnosis and dynamic treatment management. Recently, a growing number of studies have demonstrated the potential of cell-free RNA (cfRNA) as a new type of noninvasive biomarker in body fluids, such as blood, saliva, and urine. Meanwhile, transcriptomes based on high-throughput RNA detection technologies keep discovering new cfRNA biomarkers. In this review, we introduce the origins and applications of cfRNA, describe its detection and qualification methods in liquid biopsy, and summarize a comprehensive list of cfRNA biomarkers in different GI cancer types. Moreover, we also discuss perspective studies of cfRNA to overcome its current limitations in clinical applications. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Yumin Zhu
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yaxian You
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siqi Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng Ning
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Heyue Jin
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhengxia Liu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhua Zhang
- Department of Health Care, Jiangsu Women and Children Health Hospital, the First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Ponomaryova AA, Rykova EY, Solovyova AI, Tarasova AS, Kostromitsky DN, Dobrodeev AY, Afanasiev SA, Cherdyntseva NV. Genomic and Transcriptomic Research in the Discovery and Application of Colorectal Cancer Circulating Markers. Int J Mol Sci 2023; 24:12407. [PMID: 37569782 PMCID: PMC10419249 DOI: 10.3390/ijms241512407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) is the most frequently occurring malignancy in the world. However, the mortality from CRC can be reduced through early diagnostics, selection of the most effective treatment, observation of the therapy success, and the earliest possible diagnosis of recurrences. A comprehensive analysis of genetic and epigenetic factors contributing to the CRC development is needed to refine diagnostic, therapeutic, and preventive strategies and to ensure appropriate decision making in managing specific CRC cases. The liquid biopsy approach utilizing circulating markers has demonstrated its good performance as a tool to detect the changes in the molecular pathways associated with various cancers. In this review, we attempted to brief the main tendencies in the development of circulating DNA and RNA-based markers in CRC such as cancer-associated DNA mutations, DNA methylation changes, and non-coding RNA expression shifts. Attention is devoted to the existing circulating nucleic acid-based CRC markers, the possibility of their application in clinical practice today, and their future improvement. Approaches to the discovery and verification of new markers are described, and the existing problems and potential solutions for them are highlighted.
Collapse
Affiliation(s)
- Anastasia A. Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Elena Yu. Rykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Engineering Problems of Ecology, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Anastasia I. Solovyova
- Department of Biochemistry, Medico-Biological Faculty, Siberian State Medical University, 634050 Tomsk, Russia
| | - Anna S. Tarasova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Dmitry N. Kostromitsky
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alexey Yu. Dobrodeev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Sergey A. Afanasiev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Nadezhda V. Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
- Faculty of Chemistry, National Research Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
18
|
Good DJ. Non-Coding RNAs in Human Health and Diseases. Genes (Basel) 2023; 14:1429. [PMID: 37510332 PMCID: PMC10380012 DOI: 10.3390/genes14071429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are, arguably, the enigma of the RNA transcriptome. Even though there are more annotated ncRNAs (25,967) compared to mRNAs (19,827), we know far less about each of the genes that produce ncRNA, especially in terms of their regulation, molecular functions, and interactions. Further, we are only beginning to understand the role of differential regulation or function of ncRNAs caused by genetic and epigenetic perturbations, such as single nucleotide variants (SNV), deletions, insertions, and histone/DNA modifications. The 22 papers in this Special Issue describe the emerging roles of ncRNAs in neurological, cardiovascular, immune, and hepatic systems, to name a few, as well as in diseases such as cancer, Prader-Willi Syndrome, cardiac arrhythmias, and diabetes. As we begin to understand the function and regulation of this class of RNAs, strategies targeting ncRNAs could lead to improved therapeutic interventions for some conditions.
Collapse
Affiliation(s)
- Deborah J Good
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
19
|
Limanówka P, Ochman B, Świętochowska E. PiRNA Obtained through Liquid Biopsy as a Possible Cancer Biomarker. Diagnostics (Basel) 2023; 13:diagnostics13111895. [PMID: 37296747 DOI: 10.3390/diagnostics13111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years PIWI-interacting RNAs (piRNAs) have gained the interest of scientists, mainly because of their possible implications in cancer. Many kinds of research showed how their expression can be linked to malignant diseases. However, most of them evaluated the expression of piRNAs in tumor tissues. It was shown how these non-coding RNAs can interfere with many signaling pathways involved in the regulation of proliferation or apoptosis. A comparison of piRNA expression in tumor tissue and adjacent healthy tissues has demonstrated they can be used as biomarkers. However, this way of obtaining samples has a significant drawback, which is the invasiveness of such a procedure. Liquid biopsy is an alternative for acquiring biological material with little to no harm to a patient. Several different piRNAs in various types of cancer were shown to be expressed in bodily fluids such as blood or urine. Furthermore, their expression significantly differed between cancer patients and healthy individuals. Hence, this review aimed to assess the possible use of liquid biopsy for cancer diagnosis with piRNAs as biomarkers.
Collapse
Affiliation(s)
- Piotr Limanówka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Błażej Ochman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| |
Collapse
|
20
|
Tong Y, Guan B, Sun Z, Dong X, Chen Y, Li Y, Jiang Y, Li J. Ratiometric fluorescent detection of exosomal piRNA-823 based on Au NCs/UiO-66-NH 2 and target-triggered rolling circle amplification. Talanta 2023; 257:124307. [PMID: 36764170 DOI: 10.1016/j.talanta.2023.124307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
piR-823 is a newly discovered colorectal cancer marker with high diagnostic efficacy. However, the current quantification methods have complicated operations and high cost, which restrict its clinical application. Herein, a metal-organic framework (MOF) with a UiO-66 prototype structure which supports gold nanoclusters (Au NCs), Au NCs/UiO-66-NH2, were prepared as a model nanobiosensing platform for ratiometric detection of exosomal piR-823. The rolling circle amplification process provides high sensitivity and the ratiometric detection process ensures good accuracy of the sensor. Such biosensor showed a wide linear range of 0.04-4 pM, and a low detection limit of 10.2 fM towards piR-823. In addition, piR-823 can be used as an effective supplement to carcinoembryonic antigen (CEA) in clinical diagnosis of colorectal cancer. This study not only provides a potentially valuable ratio fluorescence platform involving enzyme catalytic reaction, but also offers a design blueprint for further expansion of nanotechnology in the diverse biological analysis.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China
| | - Xiangjun Dong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yuqing Chen
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yanru Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China.
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
21
|
Chattopadhyay T, Gupta P, Nayak R, Mallick B. Genome-wide profiling of dysregulated piRNAs and their target genes implicated in oncogenicity of Tongue Squamous Cell Carcinoma. Gene 2022; 849:146919. [PMID: 36179965 DOI: 10.1016/j.gene.2022.146919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
PIWI-interacting RNAs (piRNAs) are single-stranded, 23-36 nucleotide long RNAs that regulate gene expression in the germline but are also detected in some cancers. However, there are no reports yet on piRNA expression in tongue squamous cell carcinoma (TSCC), the most common oral cancer (80-90% percent of all oral cancers). We performed small RNA and whole transcriptome sequencing in H357 tongue cancer and HOK cells (GEO database accession numbers: GSE196674 and GSE196688). We also examined nine published sets of gene expression array data of TSCC tissues from the GEO database to decode piRNAs and their putative targets that may be involved in tumorigenesis. We identified a pool of 16058 and 25677 piRNAs in H357 and HOK, respectively, among which 406 are differentially expressed. We also found that 2094 protein-coding genes are differentially expressed in either TSCC tissues or cell lines. We performed target predictions for these piRNA, pathway and disease function (DF) analyses, as well as qRT-PCR validation of piRNA-target pairs. These experiments revealed one up-regulated (FDFT1) and four down-regulated (OGA, BDH1, TAT, HYAL4) target genes that are enriched in 11 canonical pathways (CPs), with postulated roles in the initiation and progression of TSCC. Downregulation of piR-33422 is predicted to upregulate the FDFT1 gene, which encodes a mevalonate/cholesterol-pathway related farnesyl-diphosphate farnesyltransferase. The FDFT1 appears to be involved in the largest number of oncogenesis-related processes and is interacting with statins, which is a classical cancer drug. This study provides the first evidence of the piRNome of TSCC, which could be investigated further to decode piRNA-mediated gene regulations in malignancy and potential drug targets, such as FDFT1.
Collapse
Affiliation(s)
- Trisha Chattopadhyay
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Pooja Gupta
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rojalin Nayak
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
22
|
A duplex-specific nuclease assisted photoelectrochemical biosensor based on MoS2@ReS2/Ti3C2 hybrid for ultrasensitive detection of colorectal cancer-related piRNA-31143. Acta Biomater 2022; 149:287-296. [DOI: 10.1016/j.actbio.2022.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
|
23
|
Raza A, Khan AQ, Inchakalody VP, Mestiri S, Yoosuf ZSKM, Bedhiafi T, El-Ella DMA, Taib N, Hydrose S, Akbar S, Fernandes Q, Al-Zaidan L, Krishnankutty R, Merhi M, Uddin S, Dermime S. Dynamic liquid biopsy components as predictive and prognostic biomarkers in colorectal cancer. J Exp Clin Cancer Res 2022; 41:99. [PMID: 35292091 PMCID: PMC8922757 DOI: 10.1186/s13046-022-02318-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The diagnosis, prognosis and therapeutic monitoring of CRC depends largely on tissue biopsy. However, due to tumor heterogeneity and limitations such as invasiveness, high cost and limited applicability in longitudinal monitoring, liquid biopsy has gathered immense attention in CRC. Liquid biopsy has several advantages over tissue biopsy including ease of sampling, effective monitoring, and longitudinal assessment of treatment dynamics. Furthermore, the importance of liquid biopsy is signified by approval of several liquid biopsy assays by regulatory bodies indicating the powerful approach of liquid biopsy for comprehensive CRC screening, diagnostic and prognostics. Several liquid biopsy biomarkers such as novel components of the microbiome, non-coding RNAs, extracellular vesicles and circulating tumor DNA are extensively being researched for their role in CRC management. Majority of these components have shown promising results on their clinical application in CRC including early detection, observe tumor heterogeneity for treatment and response, prediction of metastases and relapse and detection of minimal residual disease. Therefore, in this review, we aim to provide updated information on various novel liquid biopsy markers such as a) oral microbiota related bacterial network b) gut microbiome-associated serum metabolites c) PIWI-interacting RNAs (piRNAs), microRNA(miRNAs), Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and d) circulating tumor DNAs (ctDNA) and circulating tumor cells (CTC) for their role in disease diagnosis, prognosis, treatment monitoring and their applicability for personalized management of CRC.
Collapse
Affiliation(s)
- Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | | | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
24
|
Cai A, Hu Y, Zhou Z, Qi Q, Wu Y, Dong P, Chen L, Wang F. PIWI-Interacting RNAs (piRNAs): Promising Applications as Emerging Biomarkers for Digestive System Cancer. Front Mol Biosci 2022; 9:848105. [PMID: 35155584 PMCID: PMC8829394 DOI: 10.3389/fmolb.2022.848105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a novel type of small non-coding RNAs (sncRNAs), which are 26–31 nucleotides in length and bind to PIWI proteins. Although piRNAs were originally discovered in germline cells and are thought to be essential regulators for germline preservation, they can also influence gene expression in somatic cells. An increasing amount of data has shown that the dysregulation of piRNAs can both promote and repress the emergence and progression of human cancers through DNA methylation, transcriptional silencing, mRNA turnover, and translational control. Digestive cancers are currently a major cause of cancer deaths worldwide. piRNAs control the expression of essential genes and pathways associated with digestive cancer progression and have been reported as possible biomarkers for the diagnosis and treatment of digestive cancer. Here, we highlight recent advances in understanding the involvement of piRNAs, as well as potential diagnostic and therapeutic applications of piRNAs in various digestive cancers.
Collapse
Affiliation(s)
- Aiting Cai
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuhao Hu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhou Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qianyi Qi
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yixuan Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
- *Correspondence: Peixin Dong, ; Lin Chen, ; Feng Wang,
| | - Lin Chen
- Department of Gastroenterology and Laboratory Medicine, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
- *Correspondence: Peixin Dong, ; Lin Chen, ; Feng Wang,
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Peixin Dong, ; Lin Chen, ; Feng Wang,
| |
Collapse
|
25
|
Zhao N, Deng Q, Zhu C, Zhang B. Mucus piRNAs profiles of Vibrio harveyi-infected Cynoglossus semilaevis: A hint for fish disease monitoring. JOURNAL OF FISH DISEASES 2022; 45:165-175. [PMID: 34741552 DOI: 10.1111/jfd.13546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The half-smooth tongue sole, Cynoglossus semilaevis, is an important cultured flatfish species. Vibrio harveyi is a common pathogen to this fish, which may result in great economic loss to C. semilaevis culture industry. piRNAs, a non-coding RNAs with 26-32 nt, have been regarded as promising biomarkers for cancer diagnosis and fish diseases. Here, we extracted the RNA from mucus of C. semilaevis and constructed the differential expression profiles of piRNAs between the sick fish (MS) and healthy fish (MC). We identified 45,696 differentially expressed piRNAs including 22,735 up-regulated piRNAs and 22,961 down-regulated piRNAs in MS group compared with MC group. The GO enrichment and KEGG pathway enrichment analyses of the differential piRNAs were carried out. The result showed immunity-related target genes mainly involved in immune system process, response to stimulus, cell killing, immune system, infectious diseases and cell growth and death. The 10 most differentially expressed piRNAs were chosen to perform the qRT-PCR, while only seven piRNAs were consistent with the sequence result. Compared with MC group, the expression levels of piR-mmu-72173>piR-rno-62831>piR-xtr-704880, piR-dme-15546979, piR-mmu-49941660, piR-mmu-29283297 and piR-mmu-1758399 were significantly lower, and piR-gga-10574 and piR-gga-134812 were significantly higher in MS group. These piRNAs may be potential biomarkers during the V. harveyi infection of C. semilaevis. This study could provide a new method to identify the infection status of C. semilaevis and understand better about the innate and adaptive immune system in C. semilaevis during bacterial infection.
Collapse
Affiliation(s)
- Na Zhao
- Southern Marine science and engineering Guangdong laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Shanghai Ocean University, Shanghai, China
| | - Qiuxia Deng
- Southern Marine science and engineering Guangdong laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, China
| | - Chunhua Zhu
- Southern Marine science and engineering Guangdong laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, China
| | - Bo Zhang
- Southern Marine science and engineering Guangdong laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, China
- Tianjin Fisheries Research Institute, Tianjin, China
| |
Collapse
|
26
|
Cammarata G, de Miguel-Perez D, Russo A, Peleg A, Dolo V, Rolfo C, Taverna S. Emerging noncoding RNAs contained in extracellular vesicles: rising stars as biomarkers in lung cancer liquid biopsy. Ther Adv Med Oncol 2022; 14:17588359221131229. [PMID: 36353504 PMCID: PMC9638531 DOI: 10.1177/17588359221131229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
Lung cancer has a high morbidity and mortality rate, and affected patients have a
poor prognosis and low survival. The therapeutic approaches for lung cancer
treatment, including surgery, radiotherapy, and chemotherapy, are not completely
effective, due to late diagnosis. Although the identification of genetic drivers
has contributed to the improvement of lung cancer clinical management, the
discovery of new diagnostic and prognostic tools remains a critical issue.
Liquid biopsy (LB) represents a minimally invasive approach and practical
alternative source to investigate tumor-derived alterations and to facilitate
the selection of targeted therapies. LB allows for the testing of different
analytes such as circulating tumor cells, extracellular vesicles (EVs),
tumor-educated platelets, and cell-free nucleic acids including DNAs, RNAs, and
noncoding RNAs (ncRNAs). Several regulatory factors control the key cellular
oncogenic pathways involved in cancers. ncRNAs have a wide range of regulatory
effects in lung cancers. This review focuses on emerging regulatory ncRNAs,
freely circulating in body fluids or shuttled by EVs, such as circular-RNAs,
small nucleolar-RNAs, small nuclear-RNAs, and piwi-RNAs, as new biomarkers for
early detection, prognosis, and monitoring of therapeutic strategy of lung
cancer treatment.
Collapse
Affiliation(s)
- Giuseppe Cammarata
- Institute of Translational Pharmacology (IFT), National Research Council (CNR) of Italy, Palermo, Italy
| | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Russo
- Medical Oncology Unit, A.O. Papardo & Department of Human Pathology, University of Messina, Messina, Italy
| | - Ariel Peleg
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1079, New York, NY 10029-6574, USA
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR) of Italy, Via Ugo La Malfa, 153, Palermo 90146, Italy
| |
Collapse
|
27
|
Riquelme I, Pérez-Moreno P, Letelier P, Brebi P, Roa JC. The Emerging Role of PIWI-Interacting RNAs (piRNAs) in Gastrointestinal Cancers: An Updated Perspective. Cancers (Basel) 2021; 14:202. [PMID: 35008366 PMCID: PMC8750603 DOI: 10.3390/cancers14010202] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancers produce ~3.4 million related deaths worldwide, comprising 35% of all cancer-related deaths. The high mortality among GI cancers is due to late diagnosis, the presence of metastasis and drug resistance development. Additionally, current clinical markers do not adequately guide patient management, thereby new and more reliable biomarkers and therapeutic targets are still needed for these diseases. RNA-seq technology has allowed the discovery of new types of RNA transcripts including PIWI-interacting RNAs (piRNAs), which have particular characteristics that enable these molecules to act via diverse molecular mechanisms for regulating gene expression. Cumulative evidence has described the potential role of piRNAs in the development of several tumor types as a likely explanation for certain genomic abnormalities and signaling pathways' deregulations observed in cancer. In addition, these piRNAs might be also proposed as promising diagnostic or prognostic biomarkers or as potential therapeutic targets in malignancies. This review describes important topics about piRNAs including their molecular characteristics, biosynthesis processes, gene expression silencing mechanisms, and the manner in which these transcripts have been studied in samples and cell lines of GI cancers to elucidate their implications in these diseases. Moreover, this article discusses the potential clinical usefulness of piRNAs as biomarkers and therapeutic targets in GI cancers.
Collapse
Affiliation(s)
- Ismael Riquelme
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile;
| | - Pablo Pérez-Moreno
- Millennium Institute on Immunology and Immunotherapy, Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
| | - Pablo Letelier
- Precision Health Research Laboratory, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Manuel Montt 56, Temuco 4813302, Chile;
| | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Center for Excellence in Translational Medicine—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile;
| | - Juan Carlos Roa
- Millennium Institute on Immunology and Immunotherapy, Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
| |
Collapse
|
28
|
Sadoughi F, Mirhashemi SM, Asemi Z. Epigenetic roles of PIWI proteins and piRNAs in colorectal cancer. Cancer Cell Int 2021; 21:328. [PMID: 34193172 PMCID: PMC8243752 DOI: 10.1186/s12935-021-02034-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Small non‐coding RNAs (sncRNAs) are a subgroup of non‐coding RNAs, with less than 200 nucleotides length and no potential for coding proteins. PiRNAs, a member of sncRNAs, were first discovered more than a decade ago and have attracted researcher’s attention because of their gene regulatory function both in the nucleus and in the cytoplasm. Recent investigations have found that the abnormal expression of these sncRNAs is involved in many human diseases, including cancers. Colorectal cancer (CRC), as a common gastrointestinal malignancy, is one of the important causes of cancer‐related deaths through the entire world and appears to be a consequence of mutation in the genome and epigenetic alterations. The aim of this review is to realize whether there is a relationship between CRC and piRNAs or not.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Seyyed Mehdi Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|