1
|
Lee YH, Tsai CY, Lu YS, Lin PH, Chiang YT, Yang TH, Hsu JSJ, Hsu CJ, Chen PL, Liu TC, Wu CC. Revisiting Genetic Epidemiology with a Refined Targeted Gene Panel for Hereditary Hearing Impairment in the Taiwanese Population. Genes (Basel) 2023; 14:genes14040880. [PMID: 37107638 PMCID: PMC10137978 DOI: 10.3390/genes14040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Hearing impairment is one of the most common sensory disorders in children, and targeted next-generation sequencing (NGS)-based genetic examinations can assist in its prognostication and management. In 2020, we developed a simplified 30-gene NGS panel from the original 214-gene NGS version based on Taiwanese genetic epidemiology data to increase the accessibility of NGS-based examinations. In this study, we evaluated the diagnostic performance of the 30-gene NGS panel and compared it with that of the original 214-gene NGS panel in patient subgroups with different clinical features. Data on the clinical features, genetic etiologies, audiological profiles, and outcomes were collected from 350 patients who underwent NGS-based genetic examinations for idiopathic bilateral sensorineural hearing impairment between 2020 and 2022. The overall diagnostic yield was 52%, with slight differences in genetic etiology between patients with different degrees of hearing impairment and ages of onset. No significant difference was found in the diagnostic yields between the two panels, regardless of clinical features, except for a lower detection rate of the 30-gene panel in the late-onset group. For patients with negative genetic results, where the causative variant is undetectable on current NGS-based methods, part of the negative results may be due to genes not covered by the panel or yet to be identified. In such cases, the hearing prognosis varies and may decline over time, necessitating appropriate follow-up and consultation. In conclusion, genetic etiologies can serve as references for refining targeted NGS panels with satisfactory diagnostic performance.
Collapse
Affiliation(s)
- Yen-Hui Lee
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10055, Taiwan
| | - Yue-Sheng Lu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Yu-Ting Chiang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10055, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Jacob Shu-Jui Hsu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10055, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Department of Otolaryngology, Buddhist Tzuchi General Hospital, Taichung Branch, Taichung 42743, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10055, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Department of Otolaryngology, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
- Department of Otolaryngology, National Taiwan University College of Medicine, Taipei 10002, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 30261, Taiwan
| |
Collapse
|
2
|
Ma J, Ma X, Lin K, Huang R, Bi X, Ming C, Li L, Li X, Li G, Zhao L, Yang T, Gao Y, Zhang T. Genetic screening of a Chinese cohort of children with hearing loss using a next-generation sequencing panel. Hum Genomics 2023; 17:1. [PMID: 36597107 PMCID: PMC9811745 DOI: 10.1186/s40246-022-00449-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND At present, the hereditary hearing loss homepage, ( https://hereditaryhearingloss.org/ ), includes 258 deafness genes and more than 500 genes that have been reported to cause deafness. With few exceptions, the region-specific distributions are unclear for many of the identified variants and genes. METHODS Here, we used a custom capture panel to perform targeted sequencing of 518 genes in a cohort of 879 deaf Chinese probands who lived in Yunnan. Mutation sites of the parents were performed by high-throughput sequencing and validated by Sanger sequencing. RESULTS The ratio of male to female patients was close to 1:1 (441:438) and the age of onset was mainly under six. Most patients (93.5%) were diagnosed with moderate to severe deafness. Four hundred and twenty-eight patients had variants in a deafness gene, with a detection rate of 48.7%. Pathogenic variants were detected in 98 genes and a number of these were recurrent within the cohort. However, many of the variants were rarely observed in the cohort. In accordance with the American College of Medical Genetics and Genomics, pathogenic, likely pathogenic and variants of uncertain significance accounted for 34.3%, 19.3% and 46.4% of all detected variants, respectively. The most common genes included GJB2, SLC26A4, MYO15A, MYO7A, TMC1, CDH23, USH2A and WFS1, which contained variants in more than ten cases. The two genes with the highest mutation frequency were GJB2 and SLC26A4, which accounted for 28.5% (122/428) of positive patients. We showed that more than 60.3% of coding variants were rare and novel. Of the variants that we detected, 80.0% were in coding regions, 17.9% were in introns and 2.1% were copy number variants. CONCLUSION The common mutation genes and loci detected in this study were different from those detected in other regions or ethnic groups, which suggested that genetic screening or testing programs for deafness should be formulated in accordance with the genetic characteristics of the region.
Collapse
Affiliation(s)
- Jing Ma
- grid.415549.8Yunnan Key Laboratory of Children’s Major Disease Research, Department of Otorhinolaryngology Head and Neck Surgery, Kunming Children’s Hospital, Kunming, China
| | - Xiuli Ma
- grid.415549.8Yunnan Key Laboratory of Children’s Major Disease Research, Department of Otorhinolaryngology Head and Neck Surgery, Kunming Children’s Hospital, Kunming, China ,grid.415549.8Yunnan Institute of Pediatrics, Kunming Children’s Hospital, Kunming, China
| | - Ken Lin
- grid.415549.8Yunnan Key Laboratory of Children’s Major Disease Research, Department of Otorhinolaryngology Head and Neck Surgery, Kunming Children’s Hospital, Kunming, China
| | - Rui Huang
- grid.415549.8Yunnan Key Laboratory of Children’s Major Disease Research, Department of Otorhinolaryngology Head and Neck Surgery, Kunming Children’s Hospital, Kunming, China
| | - Xianyun Bi
- grid.415549.8Yunnan Key Laboratory of Children’s Major Disease Research, Department of Otorhinolaryngology Head and Neck Surgery, Kunming Children’s Hospital, Kunming, China
| | - Cheng Ming
- grid.415549.8Yunnan Key Laboratory of Children’s Major Disease Research, Department of Otorhinolaryngology Head and Neck Surgery, Kunming Children’s Hospital, Kunming, China
| | - Li Li
- grid.415549.8Yunnan Institute of Pediatrics, Kunming Children’s Hospital, Kunming, China
| | - Xia Li
- grid.415549.8Yunnan Key Laboratory of Children’s Major Disease Research, Department of Otorhinolaryngology Head and Neck Surgery, Kunming Children’s Hospital, Kunming, China
| | - Guo Li
- grid.415549.8Yunnan Key Laboratory of Children’s Major Disease Research, Department of Otorhinolaryngology Head and Neck Surgery, Kunming Children’s Hospital, Kunming, China
| | - Liping Zhao
- grid.415549.8Yunnan Key Laboratory of Children’s Major Disease Research, Department of Otorhinolaryngology Head and Neck Surgery, Kunming Children’s Hospital, Kunming, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yingqin Gao
- Yunnan Key Laboratory of Children's Major Disease Research, Department of Otorhinolaryngology Head and Neck Surgery, Kunming Children's Hospital, Kunming, China.
| | - Tiesong Zhang
- Yunnan Key Laboratory of Children's Major Disease Research, Department of Otorhinolaryngology Head and Neck Surgery, Kunming Children's Hospital, Kunming, China.
| |
Collapse
|
3
|
Riza AL, Alkhzouz C, Farcaș M, Pîrvu A, Miclea D, Mihuț G, Pleșea RM, Ștefan D, Drodar M, Lazăr C, Study OBOTHINT, Study OBOTFUSE, Ioana M, Popp R. Non-Syndromic Hearing Loss in a Romanian Population: Carrier Status and Frequent Variants in the GJB2 Gene. Genes (Basel) 2022; 14:69. [PMID: 36672810 PMCID: PMC9858611 DOI: 10.3390/genes14010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The genetic causes of autosomal recessive nonsyndromic hearing loss (ARNSHL) are heterogeneous and highly ethnic-specific. We describe GJB2 (connexin 26) variants and carrier frequencies as part of our study and summarize previously reported ones for the Romanian population. In total, 284 unrelated children with bilateral congenital NSHL were enrolled between 2009 and 2018 in northwestern Romania. A tiered diagnostic approach was used: all subjects were tested for c.35delG, c.71G>A and deletions in GJB6 (connexin 30) using PCR-based methods. Furthermore, 124 cases undiagnosed at this stage were analyzed by multiplex-ligation-dependent probe amplifications (MLPA), probe mix P163, and sequencing of GJB2 exon 2. Targeted allele-specific PCR/restriction fragment length polymorphism (RFLP) established definite ethio-pathogenical diagnosis for 72/284 (25.35%) of the cohort. Out of the 124 further analyzed, in 12 cases (9.67%), we found compound heterozygous point mutations in GJB2. We identified one case of deletion of exon 1 of the WFS1 (wolframin) gene. Carrier status evaluation used Illumina Infinium Global Screening Array (GSA) genotyping: the HINT cohort-416 individuals in northwest Romania, and the FUSE cohort-472 individuals in southwest Romania. GSA variants yielded a cumulated risk allele presence of 0.0284. A tiered diagnostic approach may be efficient in diagnosing ARNSHL. The summarized contributions to Romanian descriptive epidemiology of ARNSHL shows that pathogenic variants in the GJB2 gene are frequent among NSHL cases and have high carrier rates, especially for c.35delG and c.71G>A. These findings may serve in health strategy development.
Collapse
Affiliation(s)
- Anca-Lelia Riza
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Camelia Alkhzouz
- First Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | - Marius Farcaș
- Molecular Sciences Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Pîrvu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Diana Miclea
- First Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | - Gheorghe Mihuț
- ENT Department, Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | - Răzvan-Mihail Pleșea
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Delia Ștefan
- Molecular Sciences Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mihaela Drodar
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Călin Lazăr
- First Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | | | | | - Mihai Ioana
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Radu Popp
- Molecular Sciences Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Homma K. The Pathological Mechanisms of Hearing Loss Caused by KCNQ1 and KCNQ4 Variants. Biomedicines 2022; 10:biomedicines10092254. [PMID: 36140355 PMCID: PMC9496569 DOI: 10.3390/biomedicines10092254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Deafness-associated genes KCNQ1 (also associated with heart diseases) and KCNQ4 (only associated with hearing loss) encode the homotetrameric voltage-gated potassium ion channels Kv7.1 and Kv7.4, respectively. To date, over 700 KCNQ1 and over 70 KCNQ4 variants have been identified in patients. The vast majority of these variants are inherited dominantly, and their pathogenicity is often explained by dominant-negative inhibition or haploinsufficiency. Our recent study unexpectedly identified cell-death-inducing cytotoxicity in several Kv7.1 and Kv7.4 variants. Elucidation of this cytotoxicity mechanism and identification of its modifiers (drugs) have great potential for aiding the development of a novel pharmacological strategy against many pathogenic KCNQ variants. The purpose of this review is to disseminate this emerging pathological role of Kv7 variants and to underscore the importance of experimentally characterizing disease-associated variants.
Collapse
Affiliation(s)
- Kazuaki Homma
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; ; Tel.: +1-312-503-5344
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
5
|
Le Nabec A, Blotas C, Briset A, Collobert M, Férec C, Moisan S. 3D Chromatin Organization Involving MEIS1 Factor in the cis-Regulatory Landscape of GJB2. Int J Mol Sci 2022; 23:ijms23136964. [PMID: 35805969 PMCID: PMC9266880 DOI: 10.3390/ijms23136964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The human genome is covered by 8% of candidate cis-regulatory elements. The identification of distal acting regulatory elements and an understanding of their action are crucial to determining their key role in gene expression. Disruptions of such regulatory elements and/or chromatin conformation are likely to play a critical role in human genetic diseases. Non-syndromic hearing loss (i.e., DFNB1) is mostly due to GJB2 (Gap Junction Beta 2) variations and DFNB1 large deletions. Although several GJB2 cis-regulatory elements (CREs) have been described, GJB2 gene regulation remains not well understood. We investigated the endogenous effect of these CREs with CRISPR (clustered regularly interspaced short palindromic repeats) disruptions and observed GJB2 expression. To decipher the GJB2 regulatory landscape, we used the 4C-seq technique and defined new chromatin contacts inside the DFNB1 locus, which permit DNA loops and long-range regulation. Moreover, through ChIP-PCR, we determined the involvement of the MEIS1 transcription factor in GJB2 expression. Taken together, the results of our study enable us to describe the 3D DFNB1 regulatory landscape.
Collapse
Affiliation(s)
- Anaïs Le Nabec
- University Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (C.B.); (A.B.); (M.C.); (C.F.)
- Correspondence: or twitter@anaisnabec (A.L.N.); (S.M.); Tel.: +33-2-98-01-65-84 (A.L.N.); +33-2-98-01-65-67 (S.M.)
| | - Clara Blotas
- University Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (C.B.); (A.B.); (M.C.); (C.F.)
| | - Alinéor Briset
- University Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (C.B.); (A.B.); (M.C.); (C.F.)
| | - Mégane Collobert
- University Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (C.B.); (A.B.); (M.C.); (C.F.)
| | - Claude Férec
- University Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (C.B.); (A.B.); (M.C.); (C.F.)
| | - Stéphanie Moisan
- University Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (C.B.); (A.B.); (M.C.); (C.F.)
- Laboratoire de Génétique Moléculaire et d’Histocompatibilité, CHRU Brest, UMR 1078, F-29200 Brest, France
- Correspondence: or twitter@anaisnabec (A.L.N.); (S.M.); Tel.: +33-2-98-01-65-84 (A.L.N.); +33-2-98-01-65-67 (S.M.)
| |
Collapse
|
6
|
Bian P, Xu B, Zhao X, Zhu Y, Chen C, Chen X, Liu X, Wang Y, Guo Y. Analysis of GJB2 Gene Mutations in 1330 Deafness Cases of Major Ethnic Groups in Northwest China. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2022; 59:469580211055571. [PMID: 35212567 PMCID: PMC8891923 DOI: 10.1177/00469580211055571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: The GJB2 gene is the most common deafness gene, and epidemic characteristics have obvious racial specificity. Our study aimed to investigate the prevalence and ethnic specificity of the GJB2 gene in deafness in major ethnic groups in Northwest China, evaluate the value of molecular screening for deafness in minority populations, and explore the strategies and methods for genetic diagnosis. Methods: Ethics approval was obtained to collect 1330 cases of moderate to very severe nonsyndromic sensorineural deafness in northwestern China. The mutation characteristics of ethnic minorities were analyzed and compared with those of 464 patients with nonsyndromic sensorineural deafness among ethnic Han in the northwestern from research group by Sequence Scanner V25.0. Then, we analyzed the ethnic specificity of the mutations. Results: A total of 15 GJB2 sequence changes were detected in 1330 minority patients. The study showed that the allele frequency in Tibetan patients was significantly lower than that in Hui and Dongxiang patients, that in Uygur patients was significantly lower than that in Han and Hui patients, and that in Kazak and Tibetan patients was significantly lower than that in Han patients, and the differences between other ethnic groups were not statistically significant. Each ethnic group has a unique GJB2 gene mutation spectrum, and its hotspot mutation distribution has its own characteristics, with c.235delC, c.109 G > A, c.299-300delAT, and c.35delG being common. Conclusions: It has been confirmed that GJB2 gene mutation has a high prevalence in patients with nonsyndromic sensorineural hearing loss in Northwest China. Each ethnic group has a unique mutation spectrum for the GJB2 gene, which is related to its genetic background. It is necessary to develop a corresponding gene diagnosis strategy according to the hotspot mutations and mutation spectrum of each ethnic group.
Collapse
Affiliation(s)
- Panpan Bian
- Department of Otolaryngology-Head and Neck Surgery, 74713Lanzhou University Second Hospital, Lanzhou, China
| | - Baicheng Xu
- Department of Otolaryngology-Head and Neck Surgery, 74713Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaoyun Zhao
- Department of Otolaryngology-Head and Neck Surgery, 74713Lanzhou University Second Hospital, Lanzhou, China
| | - YiMing Zhu
- Department of Otolaryngology-Head and Neck Surgery, 74713Lanzhou University Second Hospital, Lanzhou, China
| | - Chi Chen
- Department of Otolaryngology-Head and Neck Surgery, 74713Lanzhou University Second Hospital, Lanzhou, China
| | - XingJian Chen
- Department of Otolaryngology-Head and Neck Surgery, 74713Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaowen Liu
- Department of Otolaryngology-Head and Neck Surgery, 74713Lanzhou University Second Hospital, Lanzhou, China
| | - Yanli Wang
- Department of Otolaryngology-Head and Neck Surgery, 74713Lanzhou University Second Hospital, Lanzhou, China
| | - Yufen Guo
- Department of Otolaryngology-Head and Neck Surgery, 74713Lanzhou University Second Hospital, Lanzhou, China.,542336Health Commission of Gansu Province, Lanzhou, China
| |
Collapse
|
7
|
Batissoco AC, Pedroso-Campos V, Pardono E, Sampaio-Silva J, Sonoda CY, Vieira-Silva GA, da Silva de Oliveira Longati EU, Mariano D, Hoshino ACH, Tsuji RK, Jesus-Santos R, Abath-Neto O, Bento RF, Oiticica J, Lezirovitz K. Molecular and genetic characterization of a large Brazilian cohort presenting hearing loss. Hum Genet 2021; 141:519-538. [PMID: 34599368 DOI: 10.1007/s00439-021-02372-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022]
Abstract
Hearing loss is one of the most common sensory defects, affecting 5.5% of the worldwide population and significantly impacting health and social life. It is mainly attributed to genetic causes, but their relative contribution reflects the geographical region's socio-economic development. Extreme genetic heterogeneity with hundreds of deafness genes involved poses challenges for molecular diagnosis. Here we report the investigation of 542 hearing-impaired subjects from all Brazilian regions to search for genetic causes. Biallelic GJB2/GJB6 causative variants were identified in 12.9% (the lowest frequency was found in the Northern region, 7.7%), 0.4% carried GJB2 dominant variants, and 0.6% had the m.1555A > G variant (one aminoglycoside-related). In addition, other genetic screenings, employed in selected probands according to clinical presentation and presumptive inheritance patterns, identified causative variants in 2.4%. Ear malformations and auditory neuropathy were diagnosed in 10.8% and 3.5% of probands, respectively. In 3.8% of prelingual/perilingual cases, Waardenburg syndrome was clinically diagnosed, and in 71.4%, these diagnoses were confirmed with pathogenic variants revealed; seven out of them were novel, including one CNV. All these genetic screening strategies revealed causative variants in 16.2% of the cases. Based on causative variants in the molecular diagnosis and genealogy analyses, a probable genetic etiology was found in ~ 50% of the cases. The present study highlights the relevance of GJB2/GJB6 as a cause of hearing loss in all Brazilian regions and the importance of screening unselected samples for estimating frequencies. Moreover, when a comprehensive screening is not available, molecular diagnosis can be enhanced by selecting probands for specific screenings.
Collapse
Affiliation(s)
- Ana Carla Batissoco
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Vinicius Pedroso-Campos
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Eliete Pardono
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto de Ciências de Saúde da UNIP, São Paulo, SP, Brasil
| | - Juliana Sampaio-Silva
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Cindy Yukimi Sonoda
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Gleiciele Alice Vieira-Silva
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Diego Mariano
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ana Cristina Hiromi Hoshino
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Robinson Koji Tsuji
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Rafaela Jesus-Santos
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Osório Abath-Neto
- Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ricardo Ferreira Bento
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Jeanne Oiticica
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Karina Lezirovitz
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
8
|
Le Nabec A, Collobert M, Le Maréchal C, Marianowski R, Férec C, Moisan S. Whole-Genome Sequencing Improves the Diagnosis of DFNB1 Monoallelic Patients. Genes (Basel) 2021; 12:1267. [PMID: 34440441 PMCID: PMC8391926 DOI: 10.3390/genes12081267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Hearing loss is the most common sensory defect, due in most cases to a genetic origin. Variants in the GJB2 gene are responsible for up to 30% of non-syndromic hearing loss. Today, several deafness genotypes remain incomplete, confronting us with a diagnostic deadlock. In this study, whole-genome sequencing (WGS) was performed on 10 DFNB1 patients with incomplete genotypes. New variations on GJB2 were identified for four patients. Functional assays were realized to explore the function of one of them in the GJB2 promoter and confirm its impact on GJB2 expression. Thus, in this study WGS resolved patient genotypes, thus unlocking diagnosis. WGS afforded progress and bridged some gaps in our research.
Collapse
Affiliation(s)
- Anaïs Le Nabec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.C.); (C.L.M.); (C.F.)
| | - Mégane Collobert
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.C.); (C.L.M.); (C.F.)
| | - Cédric Le Maréchal
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.C.); (C.L.M.); (C.F.)
- Laboratoire de Génétique Moléculaire et d’Histocompatibilité, CHRU Brest, UMR 1078, F-29200 Brest, France
| | - Rémi Marianowski
- Service ORL et Chirurgie Cervicofaciale du CHRU Brest, F-29200 Brest, France;
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.C.); (C.L.M.); (C.F.)
- Laboratoire de Génétique Moléculaire et d’Histocompatibilité, CHRU Brest, UMR 1078, F-29200 Brest, France
| | - Stéphanie Moisan
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.C.); (C.L.M.); (C.F.)
- Laboratoire de Génétique Moléculaire et d’Histocompatibilité, CHRU Brest, UMR 1078, F-29200 Brest, France
| |
Collapse
|