1
|
Nguyen VN, Tran TX, Nguyen TT, Le NQK. Enhancing Arabidopsis thaliana ubiquitination site prediction through knowledge distillation and natural language processing. Methods 2024; 232:65-71. [PMID: 39447942 DOI: 10.1016/j.ymeth.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Protein ubiquitination is a critical post-translational modification (PTM) involved in diverse biological processes and plays a pivotal role in regulating physiological mechanisms and disease states. Despite various efforts to develop ubiquitination site prediction tools across species, these tools mainly rely on predefined sequence features and machine learning algorithms, with species-specific variations in ubiquitination patterns remaining poorly understood. This study introduces a novel approach for predicting Arabidopsis thaliana ubiquitination sites using a neural network model based on knowledge distillation and natural language processing (NLP) of protein sequences. Our framework employs a multi-species "Teacher model" to guide a more compact, species-specific "Student model", with the "Teacher" generating pseudo-labels that enhance the "Student" learning and prediction robustness. Cross-validation results demonstrate that our model achieves superior performance, with an accuracy of 86.3 % and an area under the curve (AUC) of 0.926, while independent testing confirmed these results with an accuracy of 86.3 % and an AUC of 0.923. Comparative analysis with established predictors further highlights the model's superiority, emphasizing the effectiveness of integrating knowledge distillation and NLP in ubiquitination prediction tasks. This study presents a promising and efficient approach for ubiquitination site prediction, offering valuable insights for researchers in related fields. The code and resources are available on GitHub: https://github.com/nuinvtnu/KD_ArapUbi.
Collapse
Affiliation(s)
- Van-Nui Nguyen
- University of Information and Communication Technology, Thai Nguyen University, Thai Nguyen, Viet Nam
| | - Thi-Xuan Tran
- University of Economics and Business Administration, Thai Nguyen University, Thai Nguyen, Viet Nam.
| | - Thi-Tuyen Nguyen
- University of Information and Communication Technology, Thai Nguyen University, Thai Nguyen, Viet Nam
| | - Nguyen Quoc Khanh Le
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
2
|
Abrar M, Hussain D, Khan IA, Ullah F, Haq MA, Aleisa MA, Alenizi A, Bhushan S, Martha S. DeepSplice: a deep learning approach for accurate prediction of alternative splicing events in the human genome. Front Genet 2024; 15:1349546. [PMID: 38974384 PMCID: PMC11224287 DOI: 10.3389/fgene.2024.1349546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/21/2024] [Indexed: 07/09/2024] Open
Abstract
Alternative splicing (AS) is a crucial process in genetic information processing that generates multiple mRNA molecules from a single gene, producing diverse proteins. Accurate prediction of AS events is essential for understanding various physiological aspects, including disease progression and prognosis. Machine learning (ML) techniques have been widely employed in bioinformatics to address this challenge. However, existing models have limitations in capturing AS events in the presence of mutations and achieving high prediction performance. To overcome these limitations, this research presents deep splicing code (DSC), a deep learning (DL)-based model for AS prediction. The proposed model aims to improve predictive ability by investigating state-of-the-art techniques in AS and developing a DL model specifically designed to predict AS events accurately. The performance of the DSC model is evaluated against existing techniques, revealing its potential to enhance the understanding and predictive power of DL algorithms in AS. It outperforms other models by achieving an average AUC score of 92%. The significance of this research lies in its contribution to identifying functional implications and potential therapeutic targets associated with AS, with applications in genomics, bioinformatics, and biomedical research. The findings of this study have the potential to advance the field and pave the way for more precise and reliable predictions of AS events, ultimately leading to a deeper understanding of genetic information processing and its impact on human physiology and disease.
Collapse
Affiliation(s)
- Mohammad Abrar
- Faculty of Computer Studies, Arab Open University, Muscat, Oman
| | - Didar Hussain
- Department of Computer Science, Bacha Khan University Charsadda, Charsadda, Pakistan
| | - Izaz Ahmad Khan
- Department of Computer Science, Bacha Khan University Charsadda, Charsadda, Pakistan
| | - Fasee Ullah
- Computer and Information Sciences department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Mohd Anul Haq
- Department of Computer Science, College of Computer and Information Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Mohammed A. Aleisa
- Department of Computer Science, College of Computer and Information Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Abdullah Alenizi
- Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Shashi Bhushan
- Computer and Information Sciences department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Sheshikala Martha
- School of Computer Science and Artificial Intelligence, SR University, Warangal, India
| |
Collapse
|
3
|
Ray Chaudhuri N, Ghosh Dastidar S. Adaptive Workflows of Machine Learning Illuminate the Sequential Operation Mechanism of the TAK1's Allosteric Network. Biochemistry 2024; 63:1474-1492. [PMID: 38743619 DOI: 10.1021/acs.biochem.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Allostery is a fundamental mechanism driving biomolecular processes that holds significant therapeutic concern. Our study rigorously investigates how two distinct machine-learning algorithms uniquely classify two already close-to-active DFG-in states of TAK1, differing just by the presence or absence of its allosteric activator TAB1, from an ensemble mixture of conformations (obtained from 2.4 μs molecular dynamics (MD) simulations). The novelty, however, lies in understanding the deeper algorithmic potentials to systematically derive a diverse set of differential residue connectivity features that reconstruct the essential mechanistic architecture for TAK1-TAB1 allostery in such a close-to-active biochemical scenario. While the recursive, random forest-based workflow displays the potential of conducting discretized, hierarchical derivation of allosteric features, a multilayer perceptron-based approach gains considerable efficacy in revealing fluid connected patterns of features when hybridized with mutual information scoring. Interestingly, both pipelines benchmark similar directions of functional conformational changes for TAK1's activation. The findings significantly advance the depth of mechanistic understanding by highlighting crucial activation signatures along a directed C-lobe → activation loop → ATP pocket channel of information flow, including (1) the αF-αE biterminal alignments and (2) the "catalytic" drift of the activation loop toward kinase active site. Besides, some novel allosteric hotspots (K253, Y206, N189, etc.) are further recognized as TAB1 sensors, transducers, and responders, including a benchmark E70 mutation site, precisely mapping the important structural segments for sequential allosteric execution. Hence, our work demonstrates how to navigate through greater structural depths and dimensions of dynamic allosteric machineries just by leveraging standard ML methods in suitable streamlined workflows adaptive to the specific system and objectives.
Collapse
Affiliation(s)
- Nibedita Ray Chaudhuri
- Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India
| | - Shubhra Ghosh Dastidar
- Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India
| |
Collapse
|
4
|
Alam W, Tayara H, Chong KT. Unlocking the therapeutic potential of drug combinations through synergy prediction using graph transformer networks. Comput Biol Med 2024; 170:108007. [PMID: 38242015 DOI: 10.1016/j.compbiomed.2024.108007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Drug combinations are frequently used to treat cancer to reduce side effects and increase efficacy. The experimental discovery of drug combination synergy is time-consuming and expensive for large datasets. Therefore, an efficient and reliable computational approach is required to investigate these drug combinations. Advancements in deep learning can handle large datasets with various biological problems. In this study, we developed a SynergyGTN model based on the Graph Transformer Network to predict the synergistic drug combinations against an untreated cancer cell line expression profile. We represent the drug via a graph, with each node and edge of the graph containing nine types of atomic feature vectors and four bonds features, respectively. The cell lines represent based on their gene expression profiles. The drug graph was passed through the GTN layers to extract a generalized feature map for each drug pairs. The drug pair extracted features and cell-line gene expression profiles were concatenated and subsequently subjected to processing through multiple densely connected layers. SynergyGTN outperformed the state-of-the-art methods, with a receiver operating characteristic area under the curve improvement of 5% on the 5-fold cross-validation. The accuracy of SynergyGTN was further verified through three types of cross-validation tests strategies namely leave-drug-out, leave-combination-out, and leave-tissue-out, resulting in improvement in accuracy of 8%, 1%, and 2%, respectively. The Astrazeneca Dream dataset was utilized as an independent dataset to validate and assess the generalizability of the proposed method, resulting in an improvement in balanced accuracy of 13%. In conclusion, SynergyGTN is a reliable and efficient computational approach for predicting drug combination synergy in cancer treatment. Finally, we developed a web server tool to facilitate the pharmaceutical industry and researchers, as available at: http://nsclbio.jbnu.ac.kr/tools/SynergyGTN/.
Collapse
Affiliation(s)
- Waleed Alam
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea; Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
5
|
Chang X, Zhu Y, Chen Y, Li L. DeepNphos: A deep-learning architecture for prediction of N-phosphorylation sites. Comput Biol Med 2024; 170:108079. [PMID: 38295472 DOI: 10.1016/j.compbiomed.2024.108079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/02/2024]
Abstract
MOTIVATION Phosphorylation, a prevalent post-translational modification, plays a crucial role in regulating cellular activities. This process encompasses O-phosphorylation (e.g., phosphoserine) and N-phosphorylation (e.g., phospho-lysine (pK), phospho-arginine (pR), and phospho-histidine (pH)). While significant research has focused on O-phosphorylation, resulting in the development of various algorithms for predicting O-phosphorylation sites with commendable performance, there has been a notable absence of models designed to predict N-phosphorylation sites. This study introduces an integrated model named DeepNphos, designed to predict N-phosphorylation sites. This model is developed based on the analysis of thousands of experimentally identified pK, pR and pH sites. RESULTS Observing that the Convolutional Neural Network (CNN) model, incorporating the One-Hot encoding feature, demonstrates favorable performance in comparison to other models when predicting pK, pR, and pH sites. Additionally, pK exhibits similarities to other lysine modification types, and integrating the CNN model with a deep-transfer learning (DTL) strategy based on tens of thousands of known lysine modification sites could enhance pK prediction performance. In contrast, pR exhibits little similarity to other arginine modification types, and the integration of DTL has minimal impact on pR prediction performance. Furthermore, the decision was made to refrain from incorporating the DTL strategy in predicting pH sites, given the scarcity of histidine modification sites beyond those associated with pH. The final classifiers for predicting pK, pR, and pH sites achieve AUC values of 0.856, 0.805 and 0.802 for ten-fold cross-validation, respectively. Overall, DeepNphos is the first classifier for predicting N-phosphorylation sites, accessible at https://github.com/ChangXulinmessi/DeepNPhos.
Collapse
Affiliation(s)
- Xulin Chang
- College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
| | - Yafei Zhu
- College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
| | - Yu Chen
- College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
| | - Lei Li
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266000, China.
| |
Collapse
|
6
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2023; 1878:188999. [PMID: 37858622 DOI: 10.1016/j.bbcan.2023.188999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Recent multi-omics studies, including proteomics, transcriptomics, genomics, and metabolomics have revealed the critical role of post-translational modifications (PTMs) in the progression and pathogenesis of Glioblastoma multiforme (GBM). Further, PTMs alter the oncogenic signaling events and offer a novel avenue in GBM therapeutics research through PTM enzymes as potential biomarkers for drug targeting. In addition, PTMs are critical regulators of chromatin architecture, gene expression, and tumor microenvironment (TME), that play a crucial function in tumorigenesis. Moreover, the implementation of artificial intelligence and machine learning algorithms enhances GBM therapeutics research through the identification of novel PTM enzymes and residues. Herein, we briefly explain the mechanism of protein modifications in GBM etiology, and in altering the biologics of GBM cells through chromatin remodeling, modulation of the TME, and signaling pathways. In addition, we highlighted the importance of PTM enzymes as therapeutic biomarkers and the role of artificial intelligence and machine learning in protein PTM prediction.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India.
| |
Collapse
|
7
|
Weigle AT, Feng J, Shukla D. Thirty years of molecular dynamics simulations on posttranslational modifications of proteins. Phys Chem Chem Phys 2022; 24:26371-26397. [PMID: 36285789 PMCID: PMC9704509 DOI: 10.1039/d2cp02883b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Posttranslational modifications (PTMs) are an integral component to how cells respond to perturbation. While experimental advances have enabled improved PTM identification capabilities, the same throughput for characterizing how structural changes caused by PTMs equate to altered physiological function has not been maintained. In this Perspective, we cover the history of computational modeling and molecular dynamics simulations which have characterized the structural implications of PTMs. We distinguish results from different molecular dynamics studies based upon the timescales simulated and analysis approaches used for PTM characterization. Lastly, we offer insights into how opportunities for modern research efforts on in silico PTM characterization may proceed given current state-of-the-art computing capabilities and methodological advancements.
Collapse
Affiliation(s)
- Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jiangyan Feng
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
8
|
Sohrawordi M, Hossain MA, Hasan MAM. PLP_FS: prediction of lysine phosphoglycerylation sites in protein using support vector machine and fusion of multiple F_Score feature selection. Brief Bioinform 2022; 23:6655632. [PMID: 35929355 DOI: 10.1093/bib/bbac306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
A newly invented post-translational modification (PTM), phosphoglycerylation, has shown its essential role in the construction and functional properties of proteins and dangerous human diseases. Hence, it is very urgent to know about the molecular mechanism behind the phosphoglycerylation process to develop the drugs for related diseases. But accurately identifying of phosphoglycerylation site from a protein sequence in a laboratory is a very difficult and challenging task. Hence, the construction of an efficient computation model is greatly sought for this purpose. A little number of computational models are currently available for identifying the phosphoglycerylation sites, which are not able to reach their prediction capability at a satisfactory level. Therefore, an effective predictor named PLP_FS has been designed and constructed to identify phosphoglycerylation sites in this study. For the training purpose, an optimal number of feature sets was obtained by fusion of multiple F_Score feature selection techniques from the features generated by three types of sequence-based feature extraction methods and fitted with the support vector machine classification technique to the prediction model. On the other hand, the k-neighbor near cleaning and SMOTE methods were also implemented to balance the benchmark dataset. The suggested model in 10-fold cross-validation obtained an accuracy of 99.22%, a sensitivity of 98.17% and a specificity of 99.75% according to the experimental findings, which are better than other currently available predictors for accurately identifying the phosphoglycerylation sites.
Collapse
Affiliation(s)
- Md Sohrawordi
- Dept. of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
- Dept. of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Md Ali Hossain
- Dept. of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md Al Mehedi Hasan
- Dept. of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| |
Collapse
|
9
|
Mini-review: Recent advances in post-translational modification site prediction based on deep learning. Comput Struct Biotechnol J 2022; 20:3522-3532. [PMID: 35860402 PMCID: PMC9284371 DOI: 10.1016/j.csbj.2022.06.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Post-translational modifications (PTMs) are closely linked to numerous diseases, playing a significant role in regulating protein structures, activities, and functions. Therefore, the identification of PTMs is crucial for understanding the mechanisms of cell biology and diseases therapy. Compared to traditional machine learning methods, the deep learning approaches for PTM prediction provide accurate and rapid screening, guiding the downstream wet experiments to leverage the screened information for focused studies. In this paper, we reviewed the recent works in deep learning to identify phosphorylation, acetylation, ubiquitination, and other PTM types. In addition, we summarized PTM databases and discussed future directions with critical insights.
Collapse
Key Words
- AAindex, Amino acid index
- ATP, Adenosine triphosphate
- AUC, Area under curve
- Ac, Acetylation
- BE, Binary encoding
- BLOSUM, Blocks substitution matrix
- Bi-LSTM, Bidirectional LSTM
- CKSAAP, Composition of k-spaced amino acid Pairs
- CNN, Convolutional neural network
- CNNOH, CNN with the one-hot encoding
- CNNWE, CNN with the word-embedding encoding
- CNNrgb, CNN red green blue
- CV, Cross-validation
- DC-CNN, Densely connected convolutional neural network
- DL, Deep learning
- DNNs, Deep neural networks
- Deep learning
- E. coli, Escherichia coli
- EBGW, Encoding based on grouped weight
- EGAAC, Enhanced grouped amino acids content
- IG, Information gain
- K, Lysine
- KNN, k nearest neighbor
- LASSO, Least absolute shrinkage and selection operator
- LSTM, Long short-term memory
- LSTMWE, LSTM with the word-embedding encoding
- M.musculus, Mus musculus
- MDC, Modular densely connected convolutional networks
- MDCAN, Multilane dense convolutional attention network
- ML, Machine learning
- MLP, Multilayer perceptron
- MMI, Multivariate mutual information
- Machine learning
- Mass spectrometry
- NMBroto, Normalized Moreau-Broto autocorrelation
- P, Proline
- PSP, PhosphoSitePlus
- PSSM, Position-specific scoring matrix
- PTM, Post-translational modifications
- Ph, Phosphorylation
- Post-translational modification
- Prediction
- PseAAC, Pseudo-amino acid composition
- R, Arginine
- RF, Random forest
- RNN, Recurrent neural network
- ROC, Receiver operating characteristic
- S, Serine
- S. typhimurium, Salmonella typhimurium
- S.cerevisiae, Saccharomyces cerevisiae
- SE, Squeeze and excitation
- SEV, Split to Equal Validation
- ST, Source and target
- SUMO, Small ubiquitin-like modifier
- SVM, Support vector machines
- T, Threonine
- Ub, Ubiquitination
- Y, Tyrosine
- ZSL, Zero-shot learning
Collapse
|
10
|
Schmoll M, Hinterdobler W. Tools for adapting to a complex habitat: G-protein coupled receptors in Trichoderma. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:65-97. [PMID: 36357080 DOI: 10.1016/bs.pmbts.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sensing the environment and interpretation of the received signals are crucial competences of living organisms in order to properly adapt to their habitat, succeed in competition and to reproduce. G-protein coupled receptors (GPCRs) are members of a large family of sensors for extracellular signals and represent the starting point of complex signaling cascades regulating a plethora of intracellular physiological processes and output pathways in fungi. In Trichoderma spp. current research involves a wide range of topics from enzyme production, light response and secondary metabolism to sexual and asexual development as well as biocontrol, all of which require delicate balancing of resources in response to the environmental challenges or biotechnological needs at hand, which are crucially impacted by the surroundings of the fungi and their intercellular signaling cascades triggering a precisely tailored response. In this review we summarize recent findings on sensing by GPCRs in Trichoderma, including the function of pheromone receptors, glucose sensing by CSG1 and CSG2, regulation of secondary metabolism by GPR8 and impacts on mycoparasitism by GPR1. Additionally, we provide an overview on structural determinants, posttranslational modifications and interactions for regulation, activation and signal termination of GPCRs in order to inspire future in depth analyses of their function and to understand previous regulatory outcomes of natural and biotechnological processes modulated or enabled by GPCRs.
Collapse
Affiliation(s)
- Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
11
|
Li Y, Zhang H, Zhang Y, Liu Y, Li Y, Tian H, Guo S, Sun M, Qin Z, Dai S. Genome-wide identification and expression analysis reveals spinach brassinosteroid-signaling kinase (BSK) gene family functions in temperature stress response. BMC Genomics 2022; 23:453. [PMID: 35725364 PMCID: PMC9208177 DOI: 10.1186/s12864-022-08684-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/10/2022] [Indexed: 11/14/2022] Open
Abstract
Background Brassinosteroid (BR)- signaling kinase (BSK) is a critical family of receptor-like cytoplasmic kinase for BR signal transduction, which plays important roles in plant development, immunity, and abiotic stress responses. Spinach (Spinacia oleracea) is cold- tolerant but heat- sensitive green leafy vegetable. A study on BSK family members and BSKs- mediated metabolic processes in spinach has not been performed. Results We identified and cloned seven SoBSKs in spinach. Phylogenetic and collinearity analyses suggested that SoBSKs had close relationship with dicotyledonous sugar beet (Beta vulgaris) rather than monocotyledons. The analyses of gene structure and conserved protein domain/ motif indicated that most SoBSKs were relative conserved, while SoBSK6 could be a truncated member. The prediction of post-translation modification (PTM) sites in SoBSKs implied their possible roles in signal transduction, redox regulation, and protein turnover of SoBSKs, especially the N-terminal myristoylation site was critical for BSK localization to cell periphery. Cis-acting elements for their responses to light, drought, temperature (heat and cold), and hormone distributed widely in the promoters of SoBSKs, implying the pivotal roles of SoBSKs in response to diverse abiotic stresses and phytohormone stimuli. Most SoBSKs were highly expressed in leaves, except for SoBSK7 in roots. Many SoBSKs were differentially regulated in spinach heat- sensitive variety Sp73 and heat- tolerant variety Sp75 under the treatments of heat, cold, as well as exogenous brassinolide (BL) and abscisic acid (ABA). The bsk134678 mutant Arabidopsis seedlings exhibited more heat tolerance than wild- type and SoBSK1- overexpressed seedlings. Conclusions A comprehensive genome- wide analysis of the BSK gene family in spinach presented a global identification and functional prediction of SoBSKs. Seven SoBSKs had relatively- conserved gene structure and protein function domains. Except for SoBSK6, all the other SoBSKs had similar motifs and conserved PTM sites. Most SoBSKs participated in the responses to heat, cold, BR, and ABA. These findings paved the way for further functional analysis on BSK- mediated regulatory mechanisms in spinach development and stress response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08684-5.
Collapse
Affiliation(s)
- Yang Li
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Heng Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Yongxue Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yanshuang Liu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Yueyue Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Haodong Tian
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Meihong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
12
|
Deep Learning-Based Advances In Protein Posttranslational Modification Site and Protein Cleavage Prediction. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2499:285-322. [PMID: 35696087 DOI: 10.1007/978-1-0716-2317-6_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Posttranslational modification (PTM ) is a ubiquitous phenomenon in both eukaryotes and prokaryotes which gives rise to enormous proteomic diversity. PTM mostly comes in two flavors: covalent modification to polypeptide chain and proteolytic cleavage. Understanding and characterization of PTM is a fundamental step toward understanding the underpinning of biology. Recent advances in experimental approaches, mainly mass-spectrometry-based approaches, have immensely helped in obtaining and characterizing PTMs. However, experimental approaches are not enough to understand and characterize more than 450 different types of PTMs and complementary computational approaches are becoming popular. Recently, due to the various advancements in the field of Deep Learning (DL), along with the explosion of applications of DL to various fields, the field of computational prediction of PTM has also witnessed the development of a plethora of deep learning (DL)-based approaches. In this book chapter, we first review some recent DL-based approaches in the field of PTM site prediction. In addition, we also review the recent advances in the not-so-studied PTM , that is, proteolytic cleavage predictions. We describe advances in PTM prediction by highlighting the Deep learning architecture, feature encoding, novelty of the approaches, and availability of the tools/approaches. Finally, we provide an outlook and possible future research directions for DL-based approaches for PTM prediction.
Collapse
|
13
|
Wang C, Tan X, Tang D, Gou Y, Han C, Ning W, Lin S, Zhang W, Chen M, Peng D, Xue Y. GPS-Uber: a hybrid-learning framework for prediction of general and E3-specific lysine ubiquitination sites. Brief Bioinform 2022; 23:6509047. [PMID: 35037020 DOI: 10.1093/bib/bbab574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
As an important post-translational modification, lysine ubiquitination participates in numerous biological processes and is involved in human diseases, whereas the site specificity of ubiquitination is mainly decided by ubiquitin-protein ligases (E3s). Although numerous ubiquitination predictors have been developed, computational prediction of E3-specific ubiquitination sites is still a great challenge. Here, we carefully reviewed the existing tools for the prediction of general ubiquitination sites. Also, we developed a tool named GPS-Uber for the prediction of general and E3-specific ubiquitination sites. From the literature, we manually collected 1311 experimentally identified site-specific E3-substrate relations, which were classified into different clusters based on corresponding E3s at different levels. To predict general ubiquitination sites, we integrated 10 types of sequence and structure features, as well as three types of algorithms including penalized logistic regression, deep neural network and convolutional neural network. Compared with other existing tools, the general model in GPS-Uber exhibited a highly competitive accuracy, with an area under curve values of 0.7649. Then, transfer learning was adopted for each E3 cluster to construct E3-specific models, and in total 112 individual E3-specific predictors were implemented. Using GPS-Uber, we conducted a systematic prediction of human cancer-associated ubiquitination events, which could be helpful for further experimental consideration. GPS-Uber will be regularly updated, and its online service is free for academic research at http://gpsuber.biocuckoo.cn/.
Collapse
Affiliation(s)
- Chenwei Wang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaodan Tan
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dachao Tang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Gou
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Cheng Han
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wanshan Ning
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaofeng Lin
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Weizhi Zhang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Miaomiao Chen
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Di Peng
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
14
|
Khanal J, Tayara H, Zou Q, To Chong K. DeepCap-Kcr: accurate identification and investigation of protein lysine crotonylation sites based on capsule network. Brief Bioinform 2021; 23:6457166. [PMID: 34882222 DOI: 10.1093/bib/bbab492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Lysine crotonylation (Kcr) is a posttranslational modification widely detected in histone and nonhistone proteins. It plays a vital role in human disease progression and various cellular processes, including cell cycle, cell organization, chromatin remodeling and a key mechanism to increase proteomic diversity. Thus, accurate information on such sites is beneficial for both drug development and basic research. Existing computational methods can be improved to more effectively identify Kcr sites in proteins. In this study, we proposed a deep learning model, DeepCap-Kcr, a capsule network (CapsNet) based on a convolutional neural network (CNN) and long short-term memory (LSTM) for robust prediction of Kcr sites on histone and nonhistone proteins (mammals). The proposed model outperformed the existing CNN architecture Deep-Kcr and other well-established tools in most cases and provided promising outcomes for practical use; in particular, the proposed model characterized the internal hierarchical representation as well as the important features from multiple levels of abstraction automatically learned from a small number of samples. The trained model was well generalized in other species (papaya). Moreover, we showed the features and properties generated by the internal capsule layer that can explore the internal data distribution related to biological significance (as a motif detector). The source code and data are freely available at https://github.com/Jhabindra-bioinfo/DeepCap-Kcr.
Collapse
Affiliation(s)
- Jhabindra Khanal
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Hilal Tayara
- School of international Engineering and Science, Jeonbuk National University, Jeonju 54896, South Korea
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea.,Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|
15
|
Omidkhah N, Ghodsi R. NO-HDAC dual inhibitors. Eur J Med Chem 2021; 227:113934. [PMID: 34700268 DOI: 10.1016/j.ejmech.2021.113934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
HDAC inhibitors and NO donors have both demonstrated independently broad therapeutic potential in a variety of diseases. Borretto et al. presented the topic of NO-HDAC dual inhibitors for the first time in 2013 as an attractive new topic. Here we collected the general structure of all synthesized NO-HDAC dual inhibitors, lead compounds, synthesis methods and biological features of the most potent dual NO-HDAC inhibitor in each category with the intention of assisting in the synthesis and optimization of new drug-like compounds for diverse diseases. Based on studies done so far, NO-HDAC dual inhibitors have displayed satisfactory results against wound healing (3), heart hypertrophy (3), inflammatory, cardiovascular, neuromuscular illnesses (11a-11e) and cancer (6a-6o, 9a-9d, 10a-10d, 16 and 17). NO-HDAC dual inhibitors can have high therapeutic potential for various diseases due to their new properties, NO properties, HDAC inhibitor properties and also due to the effects of NO on HDAC enzymes.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
i4mC-Deep: An Intelligent Predictor of N4-Methylcytosine Sites Using a Deep Learning Approach with Chemical Properties. Genes (Basel) 2021; 12:genes12081117. [PMID: 34440291 PMCID: PMC8393747 DOI: 10.3390/genes12081117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/26/2023] Open
Abstract
DNA is subject to epigenetic modification by the molecule N4-methylcytosine (4mC). N4-methylcytosine plays a crucial role in DNA repair and replication, protects host DNA from degradation, and regulates DNA expression. However, though current experimental techniques can identify 4mC sites, such techniques are expensive and laborious. Therefore, computational tools that can predict 4mC sites would be very useful for understanding the biological mechanism of this vital type of DNA modification. Conventional machine-learning-based methods rely on hand-crafted features, but the new method saves time and computational cost by making use of learned features instead. In this study, we propose i4mC-Deep, an intelligent predictor based on a convolutional neural network (CNN) that predicts 4mC modification sites in DNA samples. The CNN is capable of automatically extracting important features from input samples during training. Nucleotide chemical properties and nucleotide density, which together represent a DNA sequence, act as CNN input data. The outcome of the proposed method outperforms several state-of-the-art predictors. When i4mC-Deep was used to analyze G. subterruneus DNA, the accuracy of the results was improved by 3.9% and MCC increased by 10.5% compared to a conventional predictor.
Collapse
|