1
|
McCool MA, Bryant CJ, Abriola L, Surovtseva YV, Baserga SJ. The cytidine deaminase APOBEC3A regulates nucleolar function to promote cell growth and ribosome biogenesis. PLoS Biol 2024; 22:e3002718. [PMID: 38976757 PMCID: PMC11257408 DOI: 10.1371/journal.pbio.3002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Cancer initiates as a consequence of genomic mutations and its subsequent progression relies in part on increased production of ribosomes to maintain high levels of protein synthesis for unchecked cell growth. Recently, cytidine deaminases have been uncovered as sources of mutagenesis in cancer. In an attempt to form a connection between these 2 cancer driving processes, we interrogated the cytidine deaminase family of proteins for potential roles in human ribosome biogenesis. We identified and validated APOBEC3A and APOBEC4 as novel ribosome biogenesis factors through our laboratory's established screening platform for the discovery of regulators of nucleolar function in MCF10A cells. Through siRNA depletion experiments, we highlight APOBEC3A's requirement in making ribosomes and specific role within the processing and maturation steps that form the large subunit 5.8S and 28S ribosomal (r)RNAs. We demonstrate that a subset of APOBEC3A resides within the nucleolus and associates with critical ribosome biogenesis factors. Mechanistic insight was revealed by transient overexpression of both wild-type and a catalytically dead mutated APOBEC3A, which both increase cell growth and protein synthesis. Through an innovative nuclear RNA sequencing methodology, we identify only modest predicted APOBEC3A C-to-U target sites on the pre-rRNA and pre-mRNAs. Our work reveals a potential direct role for APOBEC3A in ribosome biogenesis likely independent of its editing function. More broadly, we found an additional function of APOBEC3A in cancer pathology through its function in ribosome biogenesis, expanding its relevance as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Mason A. McCool
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Carson J. Bryant
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Yulia V. Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Susan J. Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
2
|
Bryant CJ, McCool MA, Rosado González G, Abriola L, Surovtseva Y, Baserga S. Discovery of novel microRNA mimic repressors of ribosome biogenesis. Nucleic Acids Res 2024; 52:1988-2011. [PMID: 38197221 PMCID: PMC10899765 DOI: 10.1093/nar/gkad1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A (p21) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We provide evidence that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
Affiliation(s)
- Carson J Bryant
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mason A McCool
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
3
|
Ren S, Bai F, Schnell V, Stanko C, Ritsch M, Schenk T, Barth E, Marz M, Wang B, Pei XH, Bierhoff H. PAPAS promotes differentiation of mammary epithelial cells and suppresses breast carcinogenesis. Cell Rep 2024; 43:113644. [PMID: 38180837 DOI: 10.1016/j.celrep.2023.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Extensive remodeling of the female mammary epithelium during development and pregnancy has been linked to cancer susceptibility. The faithful response of mammary epithelial cells (MECs) to hormone signaling is key to avoiding breast cancer development. Here, we show that lactogenic differentiation of murine MECs requires silencing of genes encoding ribosomal RNA (rRNA) by the antisense transcript PAPAS. Accordingly, knockdown of PAPAS derepresses rRNA genes, attenuates the response to lactogenic hormones, and induces malignant transformation. Restoring PAPAS levels in breast cancer cells reduces tumorigenicity and lung invasion and activates many interferon-regulated genes previously linked to metastasis suppression. Mechanistically, PAPAS transcription depends on R-loop formation at the 3' end of rRNA genes, which is repressed by RNase H1 and replication protein A (RPA) overexpression in breast cancer cells. Depletion of PAPAS and upregulation of RNase H1 and RPA in human breast cancer underpin the clinical relevance of our findings.
Collapse
Affiliation(s)
- Sijia Ren
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China; Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Feng Bai
- Department of Pathology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Viviane Schnell
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Clara Stanko
- Department of Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Muriel Ritsch
- Bioinformatics Core Facility Jena, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Leutragraben 1, 07743 Jena, Germany
| | - Tino Schenk
- Department of Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Emanuel Barth
- Bioinformatics Core Facility Jena, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Leutragraben 1, 07743 Jena, Germany
| | - Manja Marz
- Bioinformatics Core Facility Jena, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Leutragraben 1, 07743 Jena, Germany
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen 518060, China
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany.
| |
Collapse
|
4
|
Li F, Zafar A, Luo L, Denning AM, Gu J, Bennett A, Yuan F, Zhang Y. R-Loops in Genome Instability and Cancer. Cancers (Basel) 2023; 15:4986. [PMID: 37894353 PMCID: PMC10605827 DOI: 10.3390/cancers15204986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
R-loops are unique, three-stranded nucleic acid structures that primarily form when an RNA molecule displaces one DNA strand and anneals to the complementary DNA strand in a double-stranded DNA molecule. R-loop formation can occur during natural processes, such as transcription, in which the nascent RNA molecule remains hybridized with the template DNA strand, while the non-template DNA strand is displaced. However, R-loops can also arise due to many non-natural processes, including DNA damage, dysregulation of RNA degradation pathways, and defects in RNA processing. Despite their prevalence throughout the whole genome, R-loops are predominantly found in actively transcribed gene regions, enabling R-loops to serve seemingly controversial roles. On one hand, the pathological accumulation of R-loops contributes to genome instability, a hallmark of cancer development that plays a role in tumorigenesis, cancer progression, and therapeutic resistance. On the other hand, R-loops play critical roles in regulating essential processes, such as gene expression, chromatin organization, class-switch recombination, mitochondrial DNA replication, and DNA repair. In this review, we summarize discoveries related to the formation, suppression, and removal of R-loops and their influence on genome instability, DNA repair, and oncogenic events. We have also discussed therapeutical opportunities by targeting pathological R-loops.
Collapse
Affiliation(s)
- Fang Li
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alyan Zafar
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ariana Maria Denning
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ansley Bennett
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
5
|
Bryant CJ, McCool MA, Rosado-González GT, Abriola L, Surovtseva YV, Baserga SJ. Discovery of novel microRNA mimic repressors of ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.526327. [PMID: 36824951 PMCID: PMC9949135 DOI: 10.1101/2023.02.17.526327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2,603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A ( p21 ) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We discovered that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, directly and potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
|
6
|
Theophanous A, Christodoulou A, Mattheou C, Sibai DS, Moss T, Santama N. Transcription factor UBF depletion in mouse cells results in downregulation of both downstream and upstream elements of the rRNA transcription network. J Biol Chem 2023; 299:105203. [PMID: 37660911 PMCID: PMC10558777 DOI: 10.1016/j.jbc.2023.105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Transcription/processing of the ribosomal RNA (rRNA) precursor, as part of ribosome biosynthesis, is intensively studied and characterized in eukaryotic cells. Here, we constructed shRNA-based mouse cell lines partially silenced for the Upstream Binding Factor UBF, the master regulator of rRNA transcription and organizer of open rDNA chromatin. Full Ubf silencing in vivo is not viable, and these new tools allow further characterization of rRNA transcription and its coordination with cellular signaling. shUBF cells display cell cycle G1 delay and reduced 47S rRNA precursor and 28S rRNA at baseline and serum-challenged conditions. Growth-related mTOR signaling is downregulated with the fractions of active phospho-S6 Kinase and pEIF4E translation initiation factor reduced, similar to phosphorylated cell cycle regulator retinoblastoma, pRB, positive regulator of UBF availability/rRNA transcription. Additionally, we find transcription-competent pUBF (Ser484) severely restricted and its interacting initiation factor RRN3 reduced and responsive to extracellular cues. Furthermore, fractional UBF occupancy on the rDNA unit is decreased in shUBF, and expression of major factors involved in different aspects of rRNA transcription is severely downregulated by UBF depletion. Finally, we observe reduced RNA Pol1 occupancy over rDNA promoter sequences and identified unexpected regulation of RNA Pol1 expression, relative to serum availability and under UBF silencing, suggesting that regulation of rRNA transcription may not be restricted to modulation of Pol1 promoter binding/elongation rate. Overall, this work reveals that UBF depletion has a critical downstream and upstream impact on the whole network orchestrating rRNA transcription in mammalian cells.
Collapse
Affiliation(s)
- Andria Theophanous
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | | - Dany S Sibai
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Quebec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Quebec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
7
|
Alidou-D'Anjou I, Patel A, Sleiman S, Dragon F. Human SHQ1 variants R335C and A426V lead to severe ribosome biogenesis defects when expressed in yeast. Front Genet 2023; 14:1240416. [PMID: 37818102 PMCID: PMC10560722 DOI: 10.3389/fgene.2023.1240416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/17/2023] [Indexed: 10/12/2023] Open
Abstract
SHQ1 is an essential chaperone that binds the pseudouridine synthase dyskerin in the cytoplasm and escorts the enzyme to the nucleus, where dyskerin is assembled into small nucleolar RNPs (snoRNPs) of the H/ACA class. These particles carry out pseudouridine formation in ribosomal RNAs (rRNAs) and participate in maturation of rRNA precursors (pre-rRNAs). Variants of human SHQ1 have been linked to neurodevelopmental deficiencies; here we focused on two compound heterozygous mutations identified in a child showing a severe neurological disorder comprising cerebellar degeneration. To investigate the molecular defects caused by mutations R335C and A426V we used a conditional yeast strain that can be depleted of the endogenous Shq1 protein while constitutively expressing human SHQ1 (wild-type or variants). Although wild-type SHQ1 complemented the Shq1-depleted strain, cells expressing variant R335C could not support growth, and cells expressing variant A426V were temperature-sensitive. When shifted to restrictive conditions, yeast cells progressively lost H/ACA snoRNAs and accumulated unprocessed pre-rRNAs, which led to reduced production of ribosomes. Levels of Cbf5 (yeast homologue of dyskerin) were decreased in yeast cells expressing SHQ1 variants under restrictive conditions. Immunoprecipitation experiments revealed that interaction of Cbf5 with SHQ1 variants was weakened but not abolished, and yeast two-hybrid assays showed that mutation R335C is more deleterious than mutation A426V. Our data provide additional evidence for the critical role of SHQ1 in chaperoning the pseudouridine synthase dyskerin, and how its inadequate function has detrimental consequences on the production of H/ACA snoRNPs and ribosomes.
Collapse
Affiliation(s)
- Ismaël Alidou-D'Anjou
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Départment des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Aniket Patel
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Départment des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Sophie Sleiman
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Départment des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - François Dragon
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Départment des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Uusküla-Reimand L, Wilson MD. Untangling the roles of TOP2A and TOP2B in transcription and cancer. SCIENCE ADVANCES 2022; 8:eadd4920. [PMID: 36322662 PMCID: PMC9629710 DOI: 10.1126/sciadv.add4920] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 06/09/2023]
Abstract
Type II topoisomerases (TOP2) are conserved regulators of chromatin topology that catalyze reversible DNA double-strand breaks (DSBs) and are essential for maintaining genomic integrity in diverse dynamic processes such as transcription, replication, and cell division. While controlled TOP2-mediated DSBs are an elegant solution to topological constraints of DNA, DSBs also contribute to the emergence of chromosomal translocations and mutations that drive cancer. The central importance of TOP2 enzymes as frontline chemotherapeutic targets is well known; however, their precise biological functions and impact in cancer development are still poorly understood. In this review, we provide an updated overview of TOP2A and TOP2B in the regulation of chromatin topology and transcription, and discuss the recent discoveries linking TOP2 activities with cancer pathogenesis.
Collapse
Affiliation(s)
- Liis Uusküla-Reimand
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Targeting Ribosome Biogenesis in Cancer: Lessons Learned and Way Forward. Cancers (Basel) 2022; 14:cancers14092126. [PMID: 35565259 PMCID: PMC9100539 DOI: 10.3390/cancers14092126] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Cells need to produce ribosomes to sustain continuous proliferation and expand in numbers, a feature that is even more prominent in uncontrollably proliferating cancer cells. Certain cancer cell types are expected to depend more on ribosome biogenesis based on their genetic background, and this potential vulnerability can be exploited in designing effective, targeted cancer therapies. This review provides information on anti-cancer molecules that target the ribosome biogenesis machinery and indicates avenues for future research. Abstract Rapid growth and unrestrained proliferation is a hallmark of many cancers. To accomplish this, cancer cells re-wire and increase their biosynthetic and metabolic activities, including ribosome biogenesis (RiBi), a complex, highly energy-consuming process. Several chemotherapeutic agents used in the clinic impair this process by interfering with the transcription of ribosomal RNA (rRNA) in the nucleolus through the blockade of RNA polymerase I or by limiting the nucleotide building blocks of RNA, thereby ultimately preventing the synthesis of new ribosomes. Perturbations in RiBi activate nucleolar stress response pathways, including those controlled by p53. While compounds such as actinomycin D and oxaliplatin effectively disrupt RiBi, there is an ongoing effort to improve the specificity further and find new potent RiBi-targeting compounds with improved pharmacological characteristics. A few recently identified inhibitors have also become popular as research tools, facilitating our advances in understanding RiBi. Here we provide a comprehensive overview of the various compounds targeting RiBi, their mechanism of action, and potential use in cancer therapy. We discuss screening strategies, drug repurposing, and common problems with compound specificity and mechanisms of action. Finally, emerging paths to discovery and avenues for the development of potential biomarkers predictive of therapeutic outcomes across cancer subtypes are also presented.
Collapse
|
10
|
Martin ET, Blatt P, Nguyen E, Lahr R, Selvam S, Yoon HAM, Pocchiari T, Emtenani S, Siekhaus DE, Berman A, Fuchs G, Rangan P. A translation control module coordinates germline stem cell differentiation with ribosome biogenesis during Drosophila oogenesis. Dev Cell 2022; 57:883-900.e10. [PMID: 35413237 PMCID: PMC9011129 DOI: 10.1016/j.devcel.2022.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/11/2022] [Accepted: 03/10/2022] [Indexed: 01/26/2023]
Abstract
Ribosomal defects perturb stem cell differentiation, and this is the cause of ribosomopathies. How ribosome levels control stem cell differentiation is not fully known. Here, we discover that three DExD/H-box proteins govern ribosome biogenesis (RiBi) and Drosophila oogenesis. Loss of these DExD/H-box proteins, which we name Aramis, Athos, and Porthos, aberrantly stabilizes p53, arrests the cell cycle, and stalls germline stem cell (GSC) differentiation. Aramis controls cell-cycle progression by regulating translation of mRNAs that contain a terminal oligo pyrimidine (TOP) motif in their 5' UTRs. We find that TOP motifs confer sensitivity to ribosome levels that are mediated by La-related protein (Larp). One such TOP-containing mRNA codes for novel nucleolar protein 1 (Non1), a conserved p53 destabilizing protein. Upon a sufficient ribosome concentration, Non1 is expressed, and it promotes GSC cell-cycle progression via p53 degradation. Thus, a previously unappreciated TOP motif in Drosophila responds to reduced RiBi to co-regulate the translation of ribosomal proteins and a p53 repressor, coupling RiBi to GSC differentiation.
Collapse
Affiliation(s)
- Elliot T Martin
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA
| | - Patrick Blatt
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA
| | - Elaine Nguyen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Roni Lahr
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sangeetha Selvam
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA
| | - Hyun Ah M Yoon
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA; Albany Medical College, Albany, NY 12208, USA
| | - Tyler Pocchiari
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA; SUNY Upstate Medical University, Syracuse, NY 13210-2375, USA
| | - Shamsi Emtenani
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Daria E Siekhaus
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Andrea Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gabriele Fuchs
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA.
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany, SUNY, Albany, NY 12202, USA.
| |
Collapse
|
11
|
Epigenetic regulation of human non-coding RNA gene transcription. Biochem Soc Trans 2022; 50:723-736. [PMID: 35285478 DOI: 10.1042/bst20210860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Recent investigations on the non-protein-coding transcriptome of human cells have revealed previously hidden layers of gene regulation relying on regulatory non-protein-coding (nc) RNAs, including the widespread ncRNA-dependent regulation of epigenetic chromatin states and of mRNA translation and stability. However, despite its centrality, the epigenetic regulation of ncRNA genes has received relatively little attention. In this mini-review, we attempt to provide a synthetic account of recent literature suggesting an unexpected complexity in chromatin-dependent regulation of ncRNA gene transcription by the three human nuclear RNA polymerases. Emerging common features, like the heterogeneity of chromatin states within ncRNA multigene families and their influence on 3D genome organization, point to unexplored issues whose investigation could lead to a better understanding of the whole human epigenomic network.
Collapse
|
12
|
Bryant CJ, McCool MA, Abriola L, Surovtseva YV, Baserga SJ. A high-throughput assay for directly monitoring nucleolar rRNA biogenesis. Open Biol 2022; 12:210305. [PMID: 35078352 PMCID: PMC8790372 DOI: 10.1098/rsob.210305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies of the regulation of nucleolar function are critical for ascertaining clearer insights into the basic biological underpinnings of ribosome biogenesis (RB), and for future development of therapeutics to treat cancer and ribosomopathies. A number of high-throughput primary assays based on morphological alterations of the nucleolus can indirectly identify hits affecting RB. However, there is a need for a more direct high-throughput assay for a nucleolar function to further evaluate hits. Previous reports have monitored nucleolar rRNA biogenesis using 5-ethynyl uridine (5-EU) in low-throughput. We report a miniaturized, high-throughput 5-EU assay that enables specific calculation of nucleolar rRNA biogenesis inhibition, based on co-staining of the nucleolar protein fibrillarin (FBL). The assay uses two siRNA controls: a negative non-targeting siRNA control and a positive siRNA control targeting RNA Polymerase 1 (RNAP1; POLR1A), and specifically quantifies median 5-EU signal within nucleoli. Maximum nuclear 5-EU signal can also be used to monitor the effects of putative small-molecule inhibitors of RNAP1, like BMH-21, or other treatment conditions that cause FBL dispersion. We validate the 5-EU assay on 68 predominately nucleolar hits from a high-throughput primary screen, showing that 58/68 hits significantly inhibit nucleolar rRNA biogenesis. Our new method establishes direct quantification of nucleolar function in high-throughput, facilitating closer study of RB in health and disease.
Collapse
Affiliation(s)
- Carson J. Bryant
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Mason A. McCool
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | | | - Susan J. Baserga
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA,Department of Genetics, Yale School of Medicine, New Haven, CT, USA,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Sazonova EN, Lebed'ko OA, Pinaeva OG, Tsimbalist NA, Kupriyanova DA, Tarasov PK, Malofey YB. Role of Amino Acid Arginine and Nitric Oxide in Mechanisms of Cytoprotective Effect of Non-Opiate Leu-Enkephalin Analogue In Vitro. Bull Exp Biol Med 2021; 172:270-275. [PMID: 34855076 PMCID: PMC8636574 DOI: 10.1007/s10517-021-05374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 12/03/2022]
Abstract
Incubation of primary culture of pulmonary fibroblasts with non-opiate analogue of leuenkephalin (NALE; Phe-D-Ala-Gly-Phe-Leu-Arg, 0.1 μM) reduced generation of superoxide anion-radical (by 20.7%) and decreased the number of p53+ cells (by 40.2%) induced by exposure to H2O2 (60 μM). The cytoprotective effect of NALE was potentiated by NO synthase inhibitor L-NAME (1 mM): the number of p53+ cells decreased by 65.3% and morphometric parameters of the cell nuclei and nucleoli were improved. Incubation of pulmonary fibroblasts culture with peptide G (Phe-D-Ala-Gly-Phe-Leu-Gly, 0.1 μM) also significantly reduced the damaging effect of H2O2: the number of p53+ cells decreased by 73.5%, the area of cell nuclei returned to normal, and generation of superoxide anion-radical decreased by 18.4%. These results indicate that C-terminal amino acid Arg and activation of NO synthase are not involved in the direct cytoprotective effect of NALE.
Collapse
Affiliation(s)
- E N Sazonova
- Far Eastern State Medical University, Ministry of Health of the Russian Federation, Khabarovsk, Russia.
- Khabarovsk Branch of the Far Eastern Research Center for Physiology and Pathology of Respiration - Research Institute for the Protection of Motherhood and Childhood, Khabarovsk, Russia.
| | - O A Lebed'ko
- Far Eastern State Medical University, Ministry of Health of the Russian Federation, Khabarovsk, Russia
- Khabarovsk Branch of the Far Eastern Research Center for Physiology and Pathology of Respiration - Research Institute for the Protection of Motherhood and Childhood, Khabarovsk, Russia
| | - O G Pinaeva
- Far Eastern State Medical University, Ministry of Health of the Russian Federation, Khabarovsk, Russia
| | - N A Tsimbalist
- Far Eastern State Medical University, Ministry of Health of the Russian Federation, Khabarovsk, Russia
| | - D A Kupriyanova
- Far Eastern State Medical University, Ministry of Health of the Russian Federation, Khabarovsk, Russia
| | - P K Tarasov
- Far Eastern State Medical University, Ministry of Health of the Russian Federation, Khabarovsk, Russia
| | - Yu B Malofey
- Far Eastern State Medical University, Ministry of Health of the Russian Federation, Khabarovsk, Russia
| |
Collapse
|