1
|
Maity D, Kaundal RK. Exploring dysregulated miRNAs in ALS: implications for disease pathogenesis and early diagnosis. Neurol Sci 2024:10.1007/s10072-024-07840-x. [PMID: 39570437 DOI: 10.1007/s10072-024-07840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease marked by motor neuron degeneration, leading to muscle weakness and paralysis, with no effective treatments available. Early diagnosis could slow disease progression and optimize treatment. MicroRNAs (miRNAs) are being investigated as potential biomarkers due to their regulatory roles in cellular processes and stability in biofluids. However, variability across studies complicates their diagnostic utility in ALS. This study aims to identify significantly dysregulated miRNAs in ALS through meta-analysis to elucidate disease mechanisms and improve diagnostic strategies. METHODS We systematically searched PubMed, Google Scholar, and the Cochrane Library, following predefined inclusion and exclusion criteria. The primary effect measure was the standardized mean difference (SMD) with a 95% confidence interval, analyzed using a random-effects model. Additionally, we used network pharmacology to examine the targets of dysregulated miRNAs and their roles in ALS pathology. RESULTS Analysing 34 studies, we found significant upregulation of hsa-miR-206, hsa-miR-133b, hsa-miR-23a, and hsa-miR-338-3p, and significant downregulation of hsa-miR-218, hsa-miR-21-5p, and hsa-let-7b-5p in ALS patients. These miRNAs are involved in ALS pathophysiology, including stress granule formation, nuclear pore complex, SMCR8 and Sig1R dysfunction, histone methyltransferase complex alterations, and MAPK signaling perturbation, highlighting their critical role in ALS progression. CONCLUSION This study identifies several dysregulated miRNAs in ALS patients, offering insights into their role in the disease and potential as diagnostic biomarkers. These findings enhance our understanding of ALS mechanisms and may inform future diagnostic strategies. Validating these results and exploring miRNA-based interventions are crucial for improving ALS diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Dipan Maity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
2
|
Qiu M, Zhang X, Liao L, Zhang N, Liu M. Regulatory Role of Nfix Gene in Sheep Skeletal Muscle Cell Development and Its Interaction Mechanism with MSTN. Int J Mol Sci 2024; 25:11988. [PMID: 39596059 PMCID: PMC11593348 DOI: 10.3390/ijms252211988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Skeletal muscle development is crucial for livestock production, and understanding the molecular mechanisms involved is essential for enhancing muscle growth in sheep. This study aimed to investigate the role of Nfix, a member of the nuclear factor I (NFI) family, in regulating muscle development in sheep, filling a significant gap in the current understanding of Nfix deficiency and its impact on skeletal muscle growth, as no similar studies have been reported in this species. Bioinformatic analysis, including temporal analysis of transcriptome data, identified Nfix as a potential target gene for muscle growth regulation. The effects of Nfix overexpression and knockout on the proliferation and differentiation of sheep skeletal muscle cells were investigated. Changes in the expression of associated marker genes were assessed to explore the regulatory link between Nfix and the myostatin (MSTN) gene. Additionally, target miRNAs for Nfix and MSTN were predicted using online databases such as miRWalk, resulting in the construction of an Nfix-miRNA-MSTN interactive regulatory network. The findings revealed that Nfix promotes the proliferation and differentiation of sheep skeletal muscle cells, with further analysis indicating that Nfix may regulate muscle cell development by modulating MSTN expression. This study provides preliminary insights into the function of Nfix in sheep skeletal muscle development and its regulatory interactions, addressing a critical knowledge gap regarding Nfix deficiency and its implications for muscle growth. These findings contribute to a better understanding of muscle biology in sheep and provide a theoretical foundation for future research into the regulatory mechanisms governing muscle development.
Collapse
Affiliation(s)
- Meiyu Qiu
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Xuemei Zhang
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Li Liao
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ning Zhang
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Mingjun Liu
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| |
Collapse
|
3
|
Ma Z, Chu H, Li F, Han G, Cai Y, Yi J, Lu M, Xiang H, Kang H, Ye F, Chen S, Li H. Genome-Wide Identification, Evolution, and miRNA-22 Regulation of Kruppel-Like Factor ( KLF) Gene Family in Chicken ( Gallus gallus). Animals (Basel) 2024; 14:2594. [PMID: 39272379 PMCID: PMC11394431 DOI: 10.3390/ani14172594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/10/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Krüppel-like factors (KLFs) are a class of fundamental transcription factors that are widely present in various eukaryotes from nematodes to humans, named after their DNA binding domain which is highly homologous to the Krüppel factor in fruit flies. To investigate the composition, organization, and evolutionary trajectory of KLF gene family members in chickens, in our study, we leveraged conserved sequences of KLF genes from representative classes across fish, amphibians, birds, and mammals as foundational sequences. Bioinformatic tools were employed to perform homology alignment on the chicken genome database, ultimately identifying the KLF family members present in chickens. The gene structure, phylogenetic analysis, conserved base sequences, physicochemical properties, collinearity analysis, and protein structure were then analyzed using bioinformatic tools. Additionally, the impact of miRNA-22, related to poultry lipid metabolism, on the expression of the KLF gene family in the liver, heart, and muscle of Qingyuan partridge chickens was explored. The results showed that: (1) compared to fish, the KLF family in birds is more closely related to mammals and amphibians; (2) KLFs within the same subgroups are likely to be derived from a common ancestral gene duplication; (3) KLF3/8/12 in the same subgroup may have some similar or overlapping functions; (4) the motif 4 of KLF5 was most likely lost during evolution; (5) KLF9 may perform a similar function in chickens and pigs; (6) there are collinear relationships between certain KLF genes, indicating that there are related biomolecular functions between these KLF genes; (7) all members of the KLF family in chickens are non-transmembrane proteins; and (8) interference and overexpression of miRNA-22 in Qingyuan partridge chickens can affect the expression levels of KLF genes in liver, heart, and muscle.
Collapse
Affiliation(s)
- Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Huangbin Chu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Fapei Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Guochao Han
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Yingqiu Cai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Jianing Yi
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Mingrou Lu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Huimin Kang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Fei Ye
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| |
Collapse
|
4
|
Gu S, Huang Q, Jie Y, Sun C, Wen C, Yang N. Transcriptomic and epigenomic landscapes of muscle growth during the postnatal period of broilers. J Anim Sci Biotechnol 2024; 15:91. [PMID: 38961455 PMCID: PMC11223452 DOI: 10.1186/s40104-024-01049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/12/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Broilers stand out as one of the fastest-growing livestock globally, making a substantial contribution to animal meat production. However, the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear. This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers. We measured the growth performance of Cornish (CC) and White Plymouth Rock (RR) over a 42-d period. Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching (D21) and D42 for RNA-seq and ATAC-seq library construction. RESULTS The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured, with CC outpacing RR in terms of weight at each stage of development. Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages, respectively. A total of 75,149 ATAC-seq peaks were annotated in promoter, exon, intron and intergenic regions, with a higher number of peaks in the promoter and intronic regions. The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis. The results spotlighted the upregulation of ACTC1 and FDPS at D21, which were primarily associated with muscle structure development by gene cluster enrichment. Additionally, a noteworthy upregulation of MUSTN1, FOS and TGFB3 was spotted in broiler chickens at D42, which were involved in cell differentiation and muscle regeneration after injury, suggesting a regulatory role of muscle growth and repair. CONCLUSIONS This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration. Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration. These findings provide a foundation for future research to investigate the functional aspects of muscle development.
Collapse
Affiliation(s)
- Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
| | - Qiang Huang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
| | - Yuchen Jie
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Hainan, 572025, China.
| |
Collapse
|
5
|
Huang LY, Lim AY, Hsu CC, Tsai YF, Fu TC, Shyu YC, Peng SC, Wang JS. Sustainability of exercise-induced benefits on circulating MicroRNAs and physical fitness in community-dwelling older adults: a randomized controlled trial with follow up. BMC Geriatr 2024; 24:473. [PMID: 38816804 PMCID: PMC11137894 DOI: 10.1186/s12877-024-05084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Circulating miRNAs (c-miR) have been shown to be potential biomarkers in sarcopenia, but the miRNAs response to aerobic exercise in older people remains inconclusive. We sought to examine the exercise benefits on physical fitness and miRNAs, and to explore the mediating effect of miRNAs on training-induced fitness changes. METHODS This controlled trial recruited 58 community-dwelling older adults and randomized them into exercise group (EX) and control group (CON). EX received 8-week supervised moderate intensity cycling training 3x/week. C-miR expression (c-miR-21, c-miR-126, c-miR-146a, c-miR-222), physical fitness (body composition, cardiorespiratory fitness, muscular fitness) and physical activity level (PAL, measured as in daily step counts) were evaluated at baseline, post-training, and post-16-week follow-up. The mediating effect of miRNA expression onto exercise-induced physical fitness change was determined by causal mediation analysis (CMA). RESULTS Exercise significantly improved body fat and cardiorespiratory fitness in older people while maintaining muscle mass and strength, and augmented expression of c-miR-126, c-miR-146a, and c-miR-222 for up to 16 weeks post-training. Notably, older people in EX had substantially higher daily step counts than CON throughout the study even after the active training period. However, CMA revealed no significant indirect effect but a potential mediating effect of c-miR-21, but not the rest, onto the body composition, cardiorespiratory fitness, and lower limb strength. CONCLUSION An eight-week supervised MICT program promoted a higher level of physical activity up to 16 weeks post-training, which induces better cardiorespiratory fitness and resists decline in muscular measures. C-miRNA, especially c-miR-21, potentially mediates the training effect upon fitness.
Collapse
Affiliation(s)
- Li-Yuan Huang
- Department of Nursing, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Institute of Clinical Science, Chang Gung University, Taoyuan, Taiwan
| | - Ai Yin Lim
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Kwei-Shan, 259 Wen-Hwa 1 Road, Taoyuan, 333, Taiwan
| | - Chih-Chin Hsu
- Community Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yun-Fang Tsai
- College of Medicine, Institute of Clinical Science, Chang Gung University, Taoyuan, Taiwan
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tieh-Cheng Fu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Chiao Shyu
- Community Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Sheng-Chiao Peng
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Kwei-Shan, 259 Wen-Hwa 1 Road, Taoyuan, 333, Taiwan
| | - Jong-Shyan Wang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Kwei-Shan, 259 Wen-Hwa 1 Road, Taoyuan, 333, Taiwan.
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Zhao D, Liu R, Tan X, Kang H, Wang J, Ma Z, Zhao H, Xiang H, Zhang Z, Li H, Zhao G. Large-scale transcriptomic and genomic analyses reveal a novel functional gene SERPINB6 for chicken carcass traits. J Anim Sci Biotechnol 2024; 15:70. [PMID: 38730308 PMCID: PMC11571647 DOI: 10.1186/s40104-024-01026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Carcass traits are crucial indicators of meat production efficiency. However, the molecular regulatory mechanisms associated with these traits remain unclear. RESULTS In this study, we conducted comprehensive transcriptomic and genomic analyses on 399 Tiannong partridge chickens to identify key genes and variants associated with carcass traits and to elucidate the underlying regulatory mechanisms. Based on association analyses with the elastic net (EN) model, we identified 12 candidate genes (AMY1A, AP3B2, CEBPG, EEF2, EIF4EBP1, FGFR1, FOXD3, GOLM1, LOC107052698, PABPC1, SERPINB6 and TBC1D16) for 4 carcass-related traits, namely live weight, dressed weight, eviscerated weight, and breast muscle weight. SERPINB6 was identified as the only overlapping gene by 3 analyses, EN model analysis, weighted gene co-expression network analysis and differential expression analysis. Cell-level experiments confirmed that SERPINB6 promotes the proliferation of chicken DF1 cells and primary myoblasts. Further expression genome-wide association study and association analysis indicated that rs317934171 is the critical site that enhances SERPINB6 expression. Furthermore, a dual-luciferase reporter assay proved that gga-miR-1615 targets the 3'UTR of SERPINB6. CONCLUSIONS Collectively, our findings reveal that SERPINB6 serves as a novel gene for chicken carcass traits by promoting fibroblast and myoblast proliferation. Additionally, the downstream variant rs317934171 regulates SERPINB6 expression. These results identify a new target gene and molecular marker for the molecular mechanisms of chicken carcass traits.
Collapse
Affiliation(s)
- Di Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ranran Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodong Tan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huimin Kang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jie Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhengfen Zhang
- Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China.
- Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, China.
| | - Guiping Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China.
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
7
|
Zhao J, Chen M, Luo Z, Cui P, Ren P, Wang Y. Strand-Specific RNA Sequencing Reveals Gene Expression Patterns in F1 Chick Breast Muscle and Liver after Hatching. Animals (Basel) 2024; 14:1335. [PMID: 38731340 PMCID: PMC11083249 DOI: 10.3390/ani14091335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Heterosis refers to the phenomenon where hybrids exhibit superior performance compared to the parental phenotypes and has been widely utilized in crossbreeding programs for animals and crops, yet the molecular mechanisms underlying this phenomenon remain enigmatic. A better understanding of the gene expression patterns in post-hatch chickens is very important for exploring the genetic basis underlying economically important traits in the crossbreeding of chickens. In this study, breast muscle and liver tissues (n = 36) from full-sib F1 birds and their parental pure lines were selected to identify gene expression patterns and differentially expressed genes (DEGs) at 28 days of age by strand-specific RNA sequencing (ssRNA-seq). This study indicates that additivity is the predominant gene expression pattern in the F1 chicken post-hatch breast muscle (80.6% genes with additivity) and liver (94.2% genes with additivity). In breast muscle, Gene Ontology (GO) enrichment analysis revealed that a total of 11 biological process (BP) terms closely associated with growth and development were annotated in the identified DEG sets and non-additive gene sets, including STAT5A, TGFB2, FGF1, IGF2, DMA, FGF16, FGF12, STAC3, GSK3A, and GRB2. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation presented that a total of six growth- and development-related pathways were identified, involving key genes such as SLC27A4, GLUL, TGFB2, COX17, and GSK3A, including the PPAR signaling pathway, TGF-beta signaling pathway, and mTOR signaling pathway. Our results may provide a theoretical basis for crossbreeding in domestic animals.
Collapse
Affiliation(s)
- Jianfei Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Meiying Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Zhengwei Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Pengxin Cui
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Ye Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| |
Collapse
|
8
|
Baraldo N, Buzzoni L, Pasti L, Cavazzini A, Marchetti N, Mancia A. miRNAs as Biomolecular Markers for Food Safety, Quality, and Traceability in Poultry Meat-A Preliminary Study. Molecules 2024; 29:748. [PMID: 38398499 PMCID: PMC10891583 DOI: 10.3390/molecules29040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, the expression and abundance of two candidate chicken (Gallus gallus; gga) microRNAs (miRNAs, miR), gga-miR-21-5p (miR-21) and gga-miR-126-5p (miR-126), have been analyzed in order to identify biomarkers for the traceability and quality of poultry meat. Two breeds of broiler chickens were tested: the most common Ross308 (fast-growing) and the high-quality Ranger Gold (slow-growing). A preliminary analysis of the two miRNAs expressions was conducted across various tissues (liver, lung, spleen, skeletal muscle, and kidney), and the three tissues (lung, spleen, and muscle) with a higher expression were chosen for further analysis. Using quantitative reverse transcription polymerase chain reaction (RT-qPCR), the expression of miRNAs in the three tissues of a total of thirteen animals was determined. The results indicate that miR-126 could be a promising biomarker for the lung tissue in the Ranger Gold (RG) breed (p < 0.01), thus suggesting a potential applicability for tracing hybrids. RG exhibits a significantly higher miR-126 expression in the lung tissue compared to the Ross308 broilers (R308), an indication of greater respiratory capacity and, consequently, a higher oxidative metabolism of the fast-growing hybrid. During sampling, two R308 broilers presented some anomalies, including airsacculitis, hepatic steatosis, and enlarged spleen. The expression of miR-126 and miR-21 was compared in healthy animals and in those presenting anomalies. Chickens with airsacculitis and hepatic steatosis showed an up-regulation of miR-21 and miR-126 in the most commercially valuable tissue, the skeletal muscle or breast (p < 0.05).
Collapse
Affiliation(s)
- Nada Baraldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.C.)
| | - Luna Buzzoni
- Department of Life Science and Biotechnologies, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy;
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy;
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.C.)
- Council for Agricultural Research and Economics, via della Navicella 2/4, 00184 Rome, Italy
| | - Nicola Marchetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.C.)
| | - Annalaura Mancia
- Department of Life Science and Biotechnologies, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy;
- Department of Biology and Marine Science, Marine Science Research Institute, 2800 University Blvd N, Jacksonville, FL 32211, USA
| |
Collapse
|
9
|
Ren P, Chen M, Liu Q, Wu J, Li R, Lin Z, Li J. Gga-let-7a-3p inhibits the proliferation and differentiation of chicken intramuscular preadipocytes. Br Poult Sci 2024; 65:34-43. [PMID: 37807894 DOI: 10.1080/00071668.2023.2264807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
1. Intramuscular fat (IMF) is a key parameter for chicken meat quality. IMF deposition is driven by genetic, nutritional and management factors, with genetics being the determining factor. Previous whole transcriptome sequencing revealed that microRNA gga-let-7a-3p was related to lipid metabolism in breast muscle. This study further investigated the potential role of gga-let-7a-3p in IMF deposition.2. The mimic and inhibitor of gga-let-7a-3p were individually transfected into chicken intramuscular preadipocytes. Subsequently, the proliferation and differentiation states of the cells were detected. Transcriptome sequencing was performed on cells transfected with gga-let-7a-3p mimic.3. The results indicated that gga-let-7a-3p suppressed the mRNA levels of proliferation and differentiation-related genes, as well as the protein levels. EdU and Oil Red O assays revealed that gga-let-7a-3p restrained preadipocyte proliferation and differentiation. In addition, a total of 333 up-regulated genes and 807 down-regulated genes were identified in cells transfected with gga-let-7a-3p mimic. Using Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis, differential genes were found to be enriched in processes such as the peroxisome proliferator activated receptor (PPAR) signalling pathway and oxidative phosphorylation.4. The study demonstrated that gga-let-7a-3p inhibits the proliferation and differentiation of chicken intramuscular preadipocytes, which provides new understanding to further unravel the function of gga-let-7a-3p.
Collapse
Affiliation(s)
- P Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - M Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Q Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - J Wu
- Institute of Animal Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Aba, Sichuan, China
| | - R Li
- Institute of Animal Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Aba, Sichuan, China
| | - Z Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - J Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
10
|
Chen X, Zhu Y, Song C, Chen Y, Wang Y, Lai M, Zhang C, Fang X. MiR-424-5p targets HSP90AA1 to facilitate proliferation and restrain differentiation in skeletal muscle development. Anim Biotechnol 2023; 34:2514-2526. [PMID: 35875894 DOI: 10.1080/10495398.2022.2102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
MiR-424-5p was found to be a potential regulator in the proliferation, migration, and invasion of various cancer cells. However, the effects and functional mechanism of miR-424-5p in the process of myogenesis are still unclear. Previously, using microRNA (miRNA) sequencing and expression analysis, we discovered that miR-424-5p was expressed differentially in the different skeletal muscle growth periods of Xuhuai goats. We hypothesized that miR-424-5p might play an important role in skeletal muscle myogenesis. Then, we found that the proliferation ability of the mouse myoblast cell (C2C12 myoblast cell line) was significantly augmented, whereas the C2C12 differentiation was repressed after increasing the expression of miR-424-5p. Mechanistically, HSP90AA1 presented a close interrelation with miR-424-5p, which was predicted as a target gene in the progression of skeletal muscle myogenesis, using transcriptome sequencing, dual luciferase reporter gene detection, and qRT-PCR. The silencing of HSP90AA1 obviously increased C2C12 proliferation and diminished differentiation, which is consistent with the ability of miR-424-5p in C2C12. Altogether, our findings indicated the role of miR-424-5p as a novel potential regulator via HSP90AA1 during muscle myogenesis progression.
Collapse
Affiliation(s)
- Xi Chen
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Ying Zhu
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
- Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chengchuang Song
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Yaqi Chen
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Min Lai
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
11
|
Li C, Li J, Wang H, Zhang R, An X, Yuan C, Guo T, Yue Y. Genomic Selection for Live Weight in the 14th Month in Alpine Merino Sheep Combining GWAS Information. Animals (Basel) 2023; 13:3516. [PMID: 38003134 PMCID: PMC10668700 DOI: 10.3390/ani13223516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Alpine Merino Sheep is a novel breed reared from Australian Merino Sheep as the father and Gansu Alpine Fine-Wool Sheep as the mother, living all year in cold and arid alpine areas with exceptional wool quality and meat performance. Body weight is an important economic trait of the Alpine Merino Sheep, but there is limited research on identifying the genes associated with live weight in the 14th month for improving the accuracy of the genomic prediction of this trait. Therefore, this study's sample comprised 1310 Alpine Merino Sheep ewes, and the Fine Wool Sheep 50K Panel was used for genome-wide association study (GWAS) analysis to identify candidate genes. Moreover, the trial population (1310 ewes) in this study was randomly divided into two groups. One group was used as the population for GWAS analysis and screened for the most significant top 5%, top 10%, top 15%, and top 20% SNPs to obtain prior marker information. The other group was used to estimate the genetic parameters based on the weight assigned by heritability combined with different prior marker information. The aim of this study was to compare the accuracy of genomic breeding value estimation when combined with prior marker information from GWAS analysis with the optimal linear unbiased prediction method for genome selection (GBLUP) for the breeding value of target traits. Finally, the accuracy was evaluated using the five-fold cross-validation method. This research provides theoretical and technical support to improve the accuracy of sheep genome selection and better guide breeding. The results demonstrated that eight candidate genes were associated with GWAS analysis, and the gene function query and literature search results suggested that FAM184B, NCAPG, MACF1, ANKRD44, DCAF16, FUK, LCORL, and SYN3 were candidate genes affecting live weight in the 14th month (WT), which regulated the growth of muscle and bone in sheep. In genome selection analysis, the heritability of GBLUP to calculate the WT was 0.335-0.374, the accuracy after five-fold cross-verification was 0.154-0.190, and after assigning different weights to the top 5%, top 10%, top 15%, and top 20% of the GWAS results in accordance with previous information to construct the G matrix, the accuracy of the WT in the GBLUP model was improved by 2.59-7.79%.
Collapse
Affiliation(s)
- Chenglan Li
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianye Li
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Haifeng Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Rui Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yaojing Yue
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
12
|
Wang L, Wang J, Li Y, Dang S, Fan H, Xia S, Gan M, Tang T, Shao J, Jia X, Lai S. High expression of miR-30c-5p in satellite cells of high-fat diet-induced obese rabbits inhibited satellite cell proliferation and promoted differentiation. Gene 2023; 883:147656. [PMID: 37479097 DOI: 10.1016/j.gene.2023.147656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
It was revealed in our previous study that the expression of miR-30c-5p in the skeletal muscle of rabbits fed high-fat diet was highly expressed. In the present study, we further investigated the function of miR-30c-5p in proliferation and differentiation of skeletal muscle satellite cell (SMSC). The results obtained in the present study showed that the skeletal muscle fibers of the rabbits fed the standard normal diet (SND) were orderly, regular, and uniform after HE staining, however, the muscle fibers of the rabbits fed the high-fat diet (HFD) were generally atrophied, some were arranged disorderly, the intercellular space was enlarged, the nucleus was increased, and the morphology and position were abnormal. Compared with the SND group, it was observed that the weekly weight gain and fat percentage were relatively higher, and also the levels of the serum biochemical indexes such as glucose, cholesterol, and triglyceride increased significantly in the rabbits fed with HFD. In addition, the results after the transfection of miR-30c-5p mimic, mimic NC (negative control), miR-30c-5p inhibitor, and inhibitor NC into the SMSCs showed that the cell counting kit-8 (CCK-8) proliferation experiment suggested that the number of cells in the over expression group was significantly lower than that in the mimic NC group at 48, 72, 96 h of cell proliferation. At 48, 72, 120 h, the number of cells in the inhibitor group was significantly higher than that in the mimic NC group. The number of EdU positive cells decreased significantly in the over expression group compared with the mimic NC group, however, it increased significantly in the inhibitor group compared with the inhibitor NC group. Moreover, compared with the mimic NC group, the myotube area increased significantly in the miR-30c-5p mimic group, whereas it decreased significantly in the miR-30c-5p inhibitor group as compared with the inhibitor NC group. In addition, we found that trinucleotide repeat containing adaptor 6A (TNRC6A) was successfully validated as a target gene for miR-30c-5p. The expression of TNRC6A in the miR-30c-5p mimic group was significantly lower than that in the mimic NC group. It was further observed that the expression of TNRC6A increased significantly in the miR-30c-5p inhibitor group as compared to that in the inhibitor NC group. Taken together, the results obtained in this study showed that miR-30c-5p promotes the differentiation as well as inhibits the proliferation of rabbit skeletal muscle satellite cells, and TNRC6A is a target gene of miR-30c-5p.
Collapse
Affiliation(s)
- Li Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Yanhong Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shuzhang Dang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Huimei Fan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Siqi Xia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mingchuan Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Tao Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiahao Shao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
13
|
He Y, Yang P, Yuan T, Zhang L, Yang G, Jin J, Yu T. miR-103-3p Regulates the Proliferation and Differentiation of C2C12 Myoblasts by Targeting BTG2. Int J Mol Sci 2023; 24:15318. [PMID: 37894995 PMCID: PMC10607603 DOI: 10.3390/ijms242015318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Skeletal muscle, a vital and intricate organ, plays a pivotal role in maintaining overall body metabolism, facilitating movement, and supporting normal daily activities. An accumulating body of evidence suggests that microRNA (miRNA) holds a crucial role in orchestrating skeletal muscle growth. Therefore, the primary aim of this study was to investigate the influence of miR-103-3p on myogenesis. In our study, the overexpression of miR-103-3p was found to stimulate proliferation while suppressing differentiation in C2C12 myoblasts. Conversely, the inhibition of miR-103-3p expression yielded contrasting effects. Through bioinformatics analysis, potential binding sites of miR-103-3p with the 3'UTR region of BTG anti-proliferative factor 2 (BTG2) were predicted. Subsequently, dual luciferase assays conclusively demonstrated BTG2 as the direct target gene of miR-103-3p. Further investigation into the role of BTG2 in C2C12 myoblasts unveiled that its overexpression impeded proliferation and encouraged differentiation in these cells. Notably, co-transfection experiments showcased that the overexpression of BTG2 could counteract the effects induced by miR-103-3p. In summary, our findings elucidate that miR-103-3p promotes proliferation while inhibiting differentiation in C2C12 myoblasts by targeting BTG2.
Collapse
Affiliation(s)
- Yulin He
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Peiyu Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tiantian Yuan
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lin Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Taiyong Yu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
14
|
Yang Y, Wu J, Liu W, Zhao Y, Chen H. The Function and Regulation Mechanism of Non-Coding RNAs in Muscle Development. Int J Mol Sci 2023; 24:14534. [PMID: 37833983 PMCID: PMC10572267 DOI: 10.3390/ijms241914534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Animal skeletal muscle growth is regulated by a complex molecular network including some non-coding RNAs (ncRNAs). In this paper, we review the non-coding RNAs related to the growth and development of common animal skeletal muscles, aiming to provide a reference for the in-depth study of the role of ncRNAs in the development of animal skeletal muscles, and to provide new ideas for the improvement of animal production performance.
Collapse
Affiliation(s)
- Yaling Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Jian Wu
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Yumin Zhao
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| |
Collapse
|
15
|
Ling X, Wang Q, Wu P, Zhou K, Zhang J, Zhang G. Exploration of Potential Target Genes of miR-24-3p in Chicken Myoblasts by Transcriptome Sequencing Analysis. Genes (Basel) 2023; 14:1764. [PMID: 37761904 PMCID: PMC10530709 DOI: 10.3390/genes14091764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Broiler skeletal muscle growth is significantly influenced by miRNAs. Our earlier research demonstrated that miR-24-3p significantly suppressed the proliferation of chicken myoblasts while promoting their differentiation. The purpose of this study is to investigate miR-24-3p potential target genes in chickens. We collected myoblasts of Jinghai yellow chicken and transfected four samples with mimics of miR-24-3p and another four samples with mimic NC (negative control) for RNA-seq. We obtained 54.34 Gb of raw data in total and 50.79 Gb of clean data remained after filtering. Moreover, 11,635 genes were found to be co-expressed in these two groups. The mimic vs. NC comparison group contained 189 DEGs in total, 119 of which were significantly up-regulated and 70 of which were significantly down-regulated. Important biological process (BP) terminology such as nuclear chromosomal segregation, reproduction, and nuclear division were discovered by GO enrichment analysis for DEGs in the mimic vs. NC comparison group. KEGG pathway analysis showed that focal adhesion, cytokine-cytokine receptor interaction, the TGF-β signaling pathway, and the MAPK signaling pathway were enriched in the top 20. Variation site analysis illustrated the SNP (single nucleotide polymorphisms) and INDEL (insertion-deletion) in the tested samples. By comparing the target genes predicted by miRDB (MicroRNA target prediction database) and TargetScan with the 189 DEGs found by the transcriptome sequencing, we discovered two up-regulated DEGs (NEURL1 and IQSEC3) and two down-regulated DEGs (REEP1 and ST6GAL1). Finally, we carried out qPCR experiments on eight DEGs and discovered that the qPCR results matched the sequencing outcomes. These findings will aid in identifying potential miR-24-3p target genes in chicken skeletal muscle and offer some new directions for upcoming research on broiler breeding.
Collapse
Affiliation(s)
- Xuanze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Qifan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Kaizhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Dalle Carbonare L, Minoia A, Zouari S, Piritore FC, Vareschi A, Romanelli MG, Valenti MT. Crosstalk between Bone and Muscles during Physical Activity. Cells 2023; 12:2088. [PMID: 37626898 PMCID: PMC10453939 DOI: 10.3390/cells12162088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Bone-muscle crosstalk is enabled thanks to the integration of different molecular signals, and it is essential for maintaining the homeostasis of skeletal and muscle tissue. Both the skeletal system and the muscular system perform endocrine activity by producing osteokines and myokines, respectively. These cytokines play a pivotal role in facilitating bone-muscle crosstalk. Moreover, recent studies have highlighted the role of non-coding RNAs in promoting crosstalk between bone and muscle in physiological or pathological conditions. Therefore, positive stimuli or pathologies that target one of the two systems can affect the other system as well, emphasizing the reciprocal influence of bone and muscle. Lifestyle and in particular physical activity influence both the bone and the muscular apparatus by acting on the single system but also by enhancing its crosstalk. Several studies have in fact demonstrated the modulation of circulating molecular factors during physical activity. These molecules are often produced by bone or muscle and are capable of activating signaling pathways involved in bone-muscle crosstalk but also of modulating the response of other cell types. Therefore, in this review we will discuss the effects of physical activity on bone and muscle cells, with particular reference to the biomolecular mechanisms that regulate their cellular interactions.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| |
Collapse
|
17
|
Chen B, Wang Y, Hou D, Zhang Y, Zhang B, Niu Y, Ji H, Tian Y, Liu X, Kang X, Cai H, Li Z. Transcriptome-Based Identification of the Muscle Tissue-Specific Expression Gene CKM and Its Regulation of Proliferation, Apoptosis and Differentiation in Chicken Primary Myoblasts. Animals (Basel) 2023; 13:2316. [PMID: 37508090 PMCID: PMC10376263 DOI: 10.3390/ani13142316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Skeletal muscle is an essential tissue in meat-producing animals, and meat-producing traits have been a hot topic in chicken genetic breeding research. Current research shows that creatine kinase M-type-like (CKM) is one of the most abundant proteins in skeletal muscle and plays an important role in the growth and development of skeletal muscle, but its role in the development of chicken skeletal muscle is still unclear. Via RNA sequencing (RNA-seq), we found that CKM was highly expressed in chicken breast muscle tissue. In this study, the expression profile of CKM was examined by quantitative real-time PCR (qPCR), and overexpression and RNA interference techniques were used to explore the functions of CKM in the proliferation, apoptosis and differentiation of chicken primary myoblasts (CPMs). It was shown that CKM was specifically highly expressed in breast muscle and leg muscle and was highly expressed in stage 16 embryonic muscle, while CKM inhibited proliferation, promoted the apoptosis and differentiation of CPMs and was involved in regulating chicken myogenesis. Transcriptome sequencing was used to identify genes that were differentially expressed in CPMs after CKM disruption, and bioinformatics analysis showed that CKM was involved in regulating chicken myogenesis. In summary, CKM plays an important role in skeletal muscle development during chicken growth and development.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Dan Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yushi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Bochun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Haigang Ji
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| |
Collapse
|
18
|
Jing Y, Gan M, Xie Z, Ma J, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Zhu L, Shen L. Characteristics of microRNAs in Skeletal Muscle of Intrauterine Growth-Restricted Pigs. Genes (Basel) 2023; 14:1372. [PMID: 37510277 PMCID: PMC10379088 DOI: 10.3390/genes14071372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
microRNAs are a class of small RNAs that have been extensively studied, which are involved in many biological processes and disease occurrence. The incidence of intrauterine growth restriction is higher in mammals, especially multiparous mammals. In this study, we found that the weight of the longissimus dorsi of intrauterine growth-restricted pigs was significantly lower than that of normal pigs. Then, intrauterine growth-restricted pig longissimus dorsi were used to characterize miRNA expression profiles by RNA sequencing. A total of 333 miRNAs were identified, of which 26 were differentially expressed. Functional enrichment analysis showed that these differentially expressed miRNAs regulate the expression of their target genes (such as PIK3R1, CCND2, AKT3, and MAP3K7), and these target genes play an important role in the proliferation and differentiation of skeletal muscle through signaling pathways such as the PI3K-Akt, MAPK, and FoxO signaling pathways. Furthermore, miRNA-451 was significantly upregulated in IUGR pig skeletal muscle. Overexpression of miR-451 in C2C12 cells significantly promoted the expression of Mb, Myod, Myog, Myh1, and Myh7, suggesting that miR-451 may be involved in the regulation of the myoblastic differentiation of C2C12 cells. Our results reveal the role of miRNA-451 in regulating myogenic differentiation of skeletal muscle in pigs with intrauterine growth restriction.
Collapse
Affiliation(s)
- Yunhong Jing
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Xie
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianfeng Ma
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
19
|
Ling X, Wang Q, Zhang J, Zhang G. Genome-Wide Analysis of the KLF Gene Family in Chicken: Characterization and Expression Profile. Animals (Basel) 2023; 13:ani13091429. [PMID: 37174466 PMCID: PMC10177326 DOI: 10.3390/ani13091429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The kruppel-like factor (KLF) gene family is a group of transcription factors containing highly conserved zinc-finger motifs, which play a crucial role in cell proliferation and differentiation. Chicken has been widely used as a model animal for analyzing gene function, however, little is known about the function of the KLF gene family in chickens. In this study, we performed genome-wide studies of chicken KLF genes and analyzed their biological and expression characteristics. We identified 13 KLF genes from chickens. Our phylogenetic, motif, and conserved domain analyses indicate that the KLF gene family has remained conserved through evolution. Synteny analysis showed the collinear relationship among KLFs, which indicated that they had related biomolecular functions. Interaction network analysis revealed that KLFs worked with 20 genes in biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that KLF2 was involved in Apelin and Forkhead Box O (FOXO) signaling pathways. Moreover, qPCR showed that 13 KLF genes were expressed in the nine selected tissues and displayed various gene expression patterns in chickens. RNA-seq showed that KLF3 and KLF10 genes were differentially expressed in the normal and high-fat diet fed groups, and KLF4, KLF5, KLF6, KLF7, KLF9, KLF12, and KLF13 genes were differentially expressed between undifferentiated and differentiated chicken preadipocytes. Besides, RNA-seq also showed that KLF genes displayed different expression patterns in muscle at 11 and 16 embryonic days old, and in 1-day-old chickens. These results indicated that the KLF genes were involved in the development of muscle and fat in chickens. Our findings provide some valuable reference points for the subsequent study of the function of KLF genes.
Collapse
Affiliation(s)
- Xuanze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Qifan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
20
|
Shen J, Wang J, Zhen H, Liu Y, Li L, Luo Y, Hu J, Liu X, Li S, Hao Z, Li M, Zhao Z. MicroRNA-381 Regulates Proliferation and Differentiation of Caprine Skeletal Muscle Satellite Cells by Targeting PTEN and JAG2. Int J Mol Sci 2022; 23:ijms232113587. [PMID: 36362373 PMCID: PMC9656929 DOI: 10.3390/ijms232113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
In our previous study, microRNA (miR)-381 was found to be the most down-regulated miRNA in skeletal muscle of Liaoning cashmere goats with higher skeletal muscle mass, but the molecular mechanism involved remains unclear. In this study, primary caprine skeletal muscle satellite cells (SMSCs) were isolated and identified. We investigated the effect of miR-381 on the viability, proliferation and differentiation of caprine SMSCs, and the target relationships of miR-381 with jagged canonical Notch ligand 2 (JAG2) and phosphatase and tensin homolog (PTEN). Cells isolated were positive for SMSC-specific marker protein Pax7. This suggests that purified SMSCs were obtained. The expression level of miR-381 achieved a peak value on day 4 after SMSC differentiation, and miR-381 also significantly increased the expression levels of myogenic differentiation marker genes: myosin heavy chain (MyHC), myogenin (MyoG) and myocyte enhancer factor 2C (MEF2C) in differentiated SMSCs, the area of MyHC-positive myotubes and the myogenic index. These findings suggest that miR-381 promoted myogenic differentiation of caprine SMSCs. The CCK8 assay and EDU staining analysis showed that miR-381 mimic both inhibited the viability of SMSCs and decreased the percentage of EDU-labeled positive SMSCs. In contrast, miR-381 inhibitor had the opposite effect with miR-381 mimic. A dual luciferase reporter assay verified that miR-381 can target JAG2 and PTEN by binding to the 3′-untranslated regions (3′-UTR) of the genes. The transfection of miR-381 mimic into caprine SMSCs resulted in decreases in expression levels of JAG2 and PTEN, while miR-381 inhibitor increased the two target genes in expression. This is the first study to reveal the biological mechanisms by which miR-381 regulates caprine SMSC activities.
Collapse
Affiliation(s)
| | - Jiqing Wang
- Correspondence: ; Tel./Fax: +86-931-763-2469
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Transcriptome analysis of breast muscle and liver in full-sibling hybrid broilers at different ages. Gene 2022; 842:146801. [PMID: 35961440 DOI: 10.1016/j.gene.2022.146801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
In China, the production mode of hybrid broilers with meat-type chicken as male parent and egg-type chicken as female parent is common, but few studies pay attention to the economic characteristics of hybrid broilers. In this experiment, we constructed a full-sib F1 population (n = 57) from male Recursive White broiler and female Lohmann Pink layer. Total 6, 6 and 7 hybrid broilers at days 1, 28 and 56 were selected randomly to collect breast muscle and liver tissues, respectively. After performing strand-specific RNA-Seq on these samples, we obtained 252.12 Gb sequencing data. Principal component analysis presented that the effects of different factors on gene expression were as below: tissue difference > age difference > sex difference. The ten genes with the highest expression in breast muscle were GAPDH, ACTA1, ATP2B3, COII, ATP6, COX3, COX1, MYL1, TNNI2 and ENSGALG00000042024. Through the analysis of differentially expressed transcripts (DETs) between different ages, we found that the number of DETs decreased progressively with the prolongation of ages in breast muscle. The same results were also observed in liver. GO enrichment analysis of DETs demonstrated that total 11 BP terms closely related to growth and development of breast muscle were annotated, such as cardiac muscle contract, muscle contract, cell division and so on. KEGG annotation presented that total 5 pathways related to growth and development were determined in breast muscle, including Cell cycle, Insulin signaling pathway, FoxO signaling pathway, Focal adhesion and Adrenergic signaling in cardiomyocytes. Our results may provide theoretical foundation for hybrid broiler production.
Collapse
|
22
|
Shi J, Li W, Liu A, Ren L, Zhang P, Jiang T, Han Y, Liu L. MiRNA sequencing of Embryonic Myogenesis in Chengkou Mountain Chicken. BMC Genomics 2022; 23:571. [PMID: 35948880 PMCID: PMC9364561 DOI: 10.1186/s12864-022-08795-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Skeletal muscle tissue is among the largest organ systems in mammals, essential for survival and movement. Embryonic muscle development determines the quantity and quality of muscles after the birth of an individual. MicroRNAs (miRNAs) are a significant class of non-coding RNAs that bind to the 3'UTR region of mRNA to regulate gene function. Total RNA was extracted from the leg muscles of chicken embryos in different developmental stages of Chengkou Mountain Chicken and used to generate 171,407,341 clean small RNA reads. Target prediction, GO, and KEGG enrichment analyses determined the significantly enriched genes and pathways. Differential analysis determined the significantly different miRNAs between chicken embryo leg muscles at different developmental stages. Meanwhile, the weighted correlation network analysis (WGCNA) identified key modules in different developmental stages, and the hub miRNAs were screened following the KME value. RESULTS The clean reads contained 2047 miRNAs, including 721 existing miRNAs, 1059 known miRNAs, and 267 novel miRNAs. Many genes and pathways related to muscle development were identified, including ERBB4, MEF2C, FZD4, the Wnt, Notch, and MAPK signaling pathways. The WGCNA established the greenyellow module and gga-miR-130b-5p for E12, magenta module and gga-miR-1643-5p for E16, purple module and gga-miR-12218-5p for E19, cyan module and gga-miR-132b-5p for E21. CONCLUSION These results lay a foundation for further research on the molecular regulatory mechanism of embryonic muscle development in Chengkou mountain chicken and provide a reference for other poultry and livestock muscle development studies.
Collapse
Affiliation(s)
- Jun'an Shi
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Wendong Li
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Anfang Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Lingtong Ren
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Pusen Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Ting Jiang
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Yuqing Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Lingbin Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China.
| |
Collapse
|
23
|
Regulation of Non-Coding RNA in the Growth and Development of Skeletal Muscle in Domestic Chickens. Genes (Basel) 2022; 13:genes13061033. [PMID: 35741795 PMCID: PMC9222894 DOI: 10.3390/genes13061033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Chicken is the most widely consumed meat product worldwide and is a high-quality source of protein for humans. The skeletal muscle, which accounts for the majority of chicken products and contains the most valuable components, is tightly correlated to meat product yield and quality. In domestic chickens, skeletal muscle growth is regulated by a complex network of molecules that includes some non-coding RNAs (ncRNAs). As a regulator of muscle growth and development, ncRNAs play a significant function in the development of skeletal muscle in domestic chickens. Recent advances in sequencing technology have contributed to the identification and characterization of more ncRNAs (mainly microRNAs (miRNAs), long non-coding RNAs (LncRNAs), and circular RNAs (CircRNAs)) involved in the development of domestic chicken skeletal muscle, where they are widely involved in proliferation, differentiation, fusion, and apoptosis of myoblasts and satellite cells, and the specification of muscle fiber type. In this review, we summarize the ncRNAs involved in the skeletal muscle growth and development of domestic chickens and discuss the potential limitations and challenges. It will provide a theoretical foundation for future comprehensive studies on ncRNA participation in the regulation of skeletal muscle growth and development in domestic chickens.
Collapse
|
24
|
Wu P, Zhou K, Zhang J, Ling X, Zhang X, Zhang L, Li P, Wei Q, Zhang T, Wang X, Zhang G. Identification of crucial circRNAs in skeletal muscle during chicken embryonic development. BMC Genomics 2022; 23:330. [PMID: 35484498 PMCID: PMC9052468 DOI: 10.1186/s12864-022-08588-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Chicken provides humans with a large amount of animal protein every year, in which skeletal muscle plays a leading role. The embryonic skeletal muscle development determines the number of muscle fibers and will affect the muscle production of chickens. CircRNAs are involved in a variety of important biological processes, including muscle development. However, studies on circRNAs in the chicken embryo muscle development are still lacking. Results In the study, we collected chicken leg muscles at 14 and 20-day embryo ages both in the fast- and slow-growing groups for RNA-seq. We identified 245 and 440 differentially expressed (DE) circRNAs in the comparison group F14vsF20 and S14vsS20 respectively. GO enrichment analysis for the host genes of DE circRNAs showed that biological process (BP) terms in the top 20 related to growth in F14vsF20 were found such as positive regulation of transcription involved in G1/S phase of mitotic cell cycle, multicellular organismal macromolecule metabolic process, and multicellular organismal metabolic process. In group S14vsS20, we also found some BP terms associated with growth in the top 20 including actomyosin structure organization, actin cytoskeleton organization and myofibril assembly. A total of 7 significantly enriched pathways were obtained, containing Adherens junction and Tight junction. Further analysis of those pathways found three crucial host genes MYH9, YBX3, IGF1R in both fast- and slow-growing groups, three important host genes CTNNA3, AFDN and CREBBP only in the fast-growing group, and six host genes FGFR2, ACTN2, COL1A2, CDC42, DOCK1 and MYL3 only in the slow-growing group. In addition, circRNA-miRNA network also revealed some key regulation pairs such as novel_circ_0007646-miR-1625-5p, novel_circ_0007646-miR-1680-5p, novel_circ_0008913-miR-148b-5p, novel_circ_0008906-miR-148b-5p and novel_circ_0001640-miR-1759-3p. Conclusions Comprehensive analysis of circRNAs and their targets would contribute to a better understanding of the molecular mechanisms in poultry skeletal muscle and it also plays an important guiding role in the next research. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08588-4.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kaizhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xuanze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xinchao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Li Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Peifeng Li
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Qingyu Wei
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xinglong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
25
|
Lee JH. Special Issue: Poultry Genetics, Breeding and Biotechnology. Genes (Basel) 2021; 12:genes12111744. [PMID: 34828350 PMCID: PMC8617757 DOI: 10.3390/genes12111744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jun Heon Lee
- Division of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea;
- Department of Bio-Big Data, Graduate School, Chungnam National University, Daejeon 34134, Korea
- Department of Bio-AI Convergence, Graduate School, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|