1
|
Barakat AJ, Butler MG. Genetics of anomalies of the kidney and urinary tract with congenital heart disease: A review. Clin Genet 2024; 106:667-678. [PMID: 39289831 DOI: 10.1111/cge.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) and congenital heart disease (CHD) are the most common congenital defects and constitute a major cause of morbidity in children. Anomalies of both systems may be isolated or associated with congenital anomalies of other organ systems. Various reports support the co-occurrence of CAKUT and CHD, although the prevalence can vary. Cardiovascular anomalies occur in 11.2% to 34% of patients with CAKUT, and CAKUT occur in 5.3% to 35.8% of those with CHD. The co-occurrence of genetic factors in both CAKUT and CHD would raise common etiologies including genetics, genetic-environmental interactions, or shared molecular mechanisms and pathways such as NODAL, NOTCH, BMP, WNT, and VEGF. Studies in animal models and humans have indicated a genetic etiology for CHD and CAKUT with hundreds of genes recognized and thousands of entries, found in a catalog of human genetic disorders. There are over 80 CAKUT genes and over 100 CHD genes available for clinical testing. For example, the HNFIB gene accounts for 5% to 31% of reported cases of CAKUT. In view of the association between CAKUT and CHD, a thorough cardiac examination should be performed in patients with CAKUT, and a similar evaluation for CAKUT in the presence of CHD. This will allow early diagnosis and therapeutic intervention to improve the long- term outcome of patients affected, and test for at-risk family members. We present here evidence for an association of anomalies involving the two organ systems, and discuss possible etiologies of targeted genes, their functions, biological processes and interactions on embryogenesis.
Collapse
Affiliation(s)
- Amin J Barakat
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
2
|
Broberg M, Ampuja M, Jones S, Ojala T, Rahkonen O, Kivelä R, Priest J, Palotie A, Ollila HM, Helle E. Genome-wide association studies highlight novel risk loci for septal defects and left-sided congenital heart defects. BMC Genomics 2024; 25:256. [PMID: 38454350 PMCID: PMC10918883 DOI: 10.1186/s12864-024-10172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Congenital heart defects (CHD) are structural defects of the heart affecting approximately 1% of newborns. They exhibit low penetrance and non-Mendelian patterns of inheritance as varied and complex traits. While genetic factors are known to play an important role in the development of CHD, the specific genetics remain unknown for the majority of patients. To elucidate the underlying genetic risk, we performed a genome wide association study (GWAS) of CHDs in general and specific CHD subgroups using the FinnGen Release 10 (R10) (N > 393,000), followed by functional fine-mapping through eQTL and co-localization analyses using the GTEx database. RESULTS We discovered three genome-wide significant loci associated with general CHD. Two of them were located in chromosome 17: 17q21.32 (rs2316327, intronic: LRRC37A2, Odds ratio (OR) [95% Confidence Interval (CI)] = 1.17[1.12-1.23], p = 1.5 × 10-9) and 17q25.3 (rs1293973611, nearest: BAHCC1, OR[95%CI] = 4.48[2.80-7.17], p = 7.0 × 10-10), respectively, and in addition to general CHD, the rs1293973611 locus was associated with the septal defect subtype. The third locus was in band 1p21.2 (rs35046143, nearest: PALMD, OR[95%CI] = 1.15[1.09-1.21], p = 7.1 × 10-9), and it was associated with general CHD and left-sided lesions. In the subgroup analysis, two additional loci were associated with septal defects (rs75230966 and rs6824295), and one with left-sided lesions (rs1305393195). In the eQTL analysis the variants rs2316327 (general CHD), and rs75230966 (septal defects) both located in 17q21.32 (with a LD r2 of 0.41) were both predicted to significantly associate with the expression of WNT9B in the atrial appendage tissue category. This effect was further confirmed by co-localization analysis, which also implicated WNT3 expression in the atrial appendage. A meta-analysis of general CHD together with the UK Biobank (combined N = 881,678) provided a different genome-wide significant locus in LRRC37A2; rs16941382 (OR[95%CI] = 1.15[1.11-1.20], p = 1.5 × 10-9) which is in significant LD with rs2316327. CONCLUSIONS Our results of general CHD and different CHD subcategories identified a complex risk locus on chromosome 17 near BAHCC1 and LRRC37A2, interacting with the genes WNT9B, WNT3 and MYL4, may constitute potential novel CHD risk associated loci, warranting future experimental tests to determine their role.
Collapse
Affiliation(s)
- Martin Broberg
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Minna Ampuja
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Samuel Jones
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Tiina Ojala
- Department of Pediatric Cardiology, New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00029, Helsinki, Finland
| | - Otto Rahkonen
- Department of Pediatric Cardiology, New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00029, Helsinki, Finland
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Wihuri Research Institute, 00290, Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - James Priest
- School of Medicine, Stanford University, Stanford University, Stanford, CA, 94305, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, 02142, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Emmi Helle
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
- Department of Pediatric Cardiology, New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00029, Helsinki, Finland.
- , Haartmaninkatu 8, Helsinki, 00014, Finland.
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, 00271, Finland.
| |
Collapse
|
3
|
Kaskinen A, Helle E. Unravelling associations between maternal health and congenital heart defect risk in the offspring-the FINNPEDHEART study. Eur Heart J 2023; 44:1293-1295. [PMID: 36734090 DOI: 10.1093/eurheartj/ehad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Anu Kaskinen
- Department of Pediatric Nephrology and Transplantation, Pediatric Research Center, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Stenbäckinkatu 9, 00290 Helsinki, Finland
| | - Emmi Helle
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Department of Cardiology, Pediatric Research Center, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Stenbäckinkatu 9, 00290 Helsinki, Finland.,Department of Paediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
4
|
Hargreaves R, Akinsanya K, Ajit SK, Dhruv NT, Driscoll J, Farina P, Gavva N, Gill M, Houghton A, Iyengar S, Jones C, Kavelaars A, Kaykas A, Koroshetz WJ, Laeng P, Laird JM, Lo DC, Luthman J, Munro G, Oshinsky ML, Sittampalam GS, Woller SA, Tamiz AP. Preclinical target validation for non-addictive therapeutics development for pain. Expert Opin Ther Targets 2022; 26:811-822. [DOI: 10.1080/14728222.2022.2147063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Seena K. Ajit
- Department of Pharmacology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Neel T. Dhruv
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States
| | - Jamie Driscoll
- National Institute of Mental Health, Bethesda, Maryland, United States
| | - Peter Farina
- Canaan Partners, Westport, Connecticut, United States
| | - Narender Gavva
- Drug Discovery Sciences, Takeda Pharmaceuticals, San Diego, California, United States
| | - Marie Gill
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States
| | | | - Smriti Iyengar
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States
| | - Carrie Jones
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Annemieke Kavelaars
- The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | | | - Walter J. Koroshetz
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States
| | - Pascal Laeng
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States
| | - Jennifer M. Laird
- Eli Lilly and Company, Windlesham, United Kingdom of Great Britain and Northern Ireland
| | - Donald C. Lo
- National Center for Advancing Translational Sciences, Bethesda, Maryland, United States
| | | | | | - Michael L. Oshinsky
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States
| | - G. Sitta Sittampalam
- National Center for Advancing Translational Sciences, Bethesda, Maryland, United States
| | - Sarah A. Woller
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States
| | - Amir P. Tamiz
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States
| |
Collapse
|
5
|
Iacobazzi D, Alvino VV, Caputo M, Madeddu P. Accelerated Cardiac Aging in Patients With Congenital Heart Disease. Front Cardiovasc Med 2022; 9:892861. [PMID: 35694664 PMCID: PMC9177956 DOI: 10.3389/fcvm.2022.892861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Abstract
An increasing number of patients with congenital heart disease (CHD) survive into adulthood but develop long-term complications including heart failure (HF). Cellular senescence, classically defined as stable cell cycle arrest, is implicated in biological processes such as embryogenesis, wound healing, and aging. Senescent cells have a complex senescence-associated secretory phenotype (SASP), involving a range of pro-inflammatory factors with important paracrine and autocrine effects on cell and tissue biology. While senescence has been mainly considered as a cause of diseases in the adulthood, it may be also implicated in some of the poor outcomes seen in patients with complex CHD. We propose that patients with CHD suffer from multiple repeated stress from an early stage of the life, which wear out homeostatic mechanisms and cause premature cardiac aging, with this term referring to the time-related irreversible deterioration of the organ physiological functions and integrity. In this review article, we gathered evidence from the literature indicating that growing up with CHD leads to abnormal inflammatory response, loss of proteostasis, and precocious age in cardiac cells. Novel research on this topic may inspire new therapies preventing HF in adult CHD patients.
Collapse
Affiliation(s)
| | | | | | - Paolo Madeddu
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Application of the Pluripotent Stem Cells and Genomics in Cardiovascular Research-What We Have Learnt and Not Learnt until Now. Cells 2021; 10:cells10113112. [PMID: 34831333 PMCID: PMC8623147 DOI: 10.3390/cells10113112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Personalized regenerative medicine and biomedical research have been galvanized and revolutionized by human pluripotent stem cells in combination with recent advances in genomics, artificial intelligence, and genome engineering. More recently, we have witnessed the unprecedented breakthrough life-saving translation of mRNA-based vaccines for COVID-19 to contain the global pandemic and the investment in billions of US dollars in space exploration projects and the blooming space-tourism industry fueled by the latest reusable space vessels. Now, it is time to examine where the translation of pluripotent stem cell research stands currently, which has been touted for more than the last two decades to cure and treat millions of patients with severe debilitating degenerative diseases and tissue injuries. This review attempts to highlight the accomplishments of pluripotent stem cell research together with cutting-edge genomics and genome editing tools and, also, the promises that have still not been transformed into clinical applications, with cardiovascular research as a case example. This review also brings to our attention the scientific and socioeconomic challenges that need to be effectively addressed to see the full potential of pluripotent stem cells at the clinical bedside.
Collapse
|