1
|
Kroeze E, Iaccarino I, Kleisman MM, Mondal M, Beder T, Khouja M, Höppner MP, Scheijde-Vermeulen MA, Kester LA, Brüggemann M, Baldus CD, Cario G, Bladergroen RS, Garnier N, Attarbaschi A, Verdu-Amorós J, Sutton R, Macintyre E, Scholten K, Arias Padilla L, Burkhardt B, Beishuizen A, den Boer ML, Kuiper RP, Loeffen JLC, Boer JM, Klapper W. Mutational and transcriptional landscape of pediatric B-cell precursor lymphoblastic lymphoma. Blood 2024; 144:74-83. [PMID: 38588489 DOI: 10.1182/blood.2024023938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT Pediatric B-cell precursor (BCP) lymphoblastic malignancies are neoplasms with manifestation either in the bone marrow or blood (BCP acute lymphoblastic leukemia [BCP-ALL]) or are less common in extramedullary tissue (BCP lymphoblastic lymphoma [BCP-LBL]). Although both presentations are similar in morphology and immunophenotype, molecular studies have been virtually restricted to BCP-ALL so far. The lack of molecular studies on BCP-LBL is due to its rarity and restriction on small, mostly formalin-fixed paraffin-embedded (FFPE) tissues. Here, to our knowledge, we present the first comprehensive mutational and transcriptional analysis of what we consider the largest BCP-LBL cohort described to date (n = 97). Whole-exome sequencing indicated a mutational spectrum of BCP-LBL, strikingly similar to that found in BCP-ALL. However, epigenetic modifiers were more frequently mutated in BCP-LBL, whereas BCP-ALL was more frequently affected by mutation in genes involved in B-cell development. Integrating copy number alterations, somatic mutations, and gene expression by RNA sequencing revealed that virtually all molecular subtypes originally defined in BCP-ALL are present in BCP-LBL, with only 7% of lymphomas that were not assigned to a subtype. Similar to BCP-ALL, the most frequent subtypes of BCP-LBL were high hyperdiploidy and ETV6::RUNX1. Tyrosine kinase/cytokine receptor rearrangements were detected in 7% of BCP-LBL. These results indicate that genetic subtypes can be identified in BCP-LBL using next-generation sequencing, even in FFPE tissue, and may be relevant to guide treatment.
Collapse
Affiliation(s)
- Emma Kroeze
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ingram Iaccarino
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| | | | - Mayukh Mondal
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Thomas Beder
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mouhamad Khouja
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marc P Höppner
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | | | - Lennart A Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Monika Brüggemann
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Claudia D Baldus
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Department of Pediatrics, Berlin-Frankfurt-Münster ALL Study Group Germany, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Nathalie Garnier
- Institut d'Hematologie et d'Oncologie Pediatrique, Hospices Civils de Lyon, Lyon, France
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Jaime Verdu-Amorós
- Department of Pediatric Hematology and Oncology, Hospital Clínico Universitario de Valencia, Valencia, Spain
- INCLIVA, Biomedical Research Institute, Valencia, Spain
| | - Rosemary Sutton
- Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
| | - Elizabeth Macintyre
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, Centre National de la Recherche Scientifique, INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Kenneth Scholten
- Pediatric Hematology and Oncology, NHL-BFM Study Center, University Hospital Münster, Münster, Germany
| | - Laura Arias Padilla
- Pediatric Hematology and Oncology, NHL-BFM Study Center, University Hospital Münster, Münster, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, NHL-BFM Study Center, University Hospital Münster, Münster, Germany
| | - Auke Beishuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, Utrecht University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Jan L C Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| |
Collapse
|
2
|
Kacanski N, Kolarovic J, Kostic T, Marjanovic I, Janic D, Pavlovic S, Karan-Djurasevic T. Presence of leukemic clone-specific immunoglobulin heavy chain rearrangements in neonatal blood spots of children with B-cell precursor acute lymphoblastic leukemia. Int J Lab Hematol 2024; 46:303-311. [PMID: 37929321 DOI: 10.1111/ijlh.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION Childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) can be traced back to birth using leukemic clone-specific immunoglobulin heavy chain (IGH) rearrangements, implying prenatal origin of this disease. METHODS We retrospectively analyzed neonatal blood spots (Guthrie cards) of 24 patients with childhood BCP-ALL aged 1-9.6 years (median 3.1 years) for the presence of clonotypic IGH rearrangements identified in diagnostic bone marrow samples. Based on the sequences of IGH rearrangements, 2 patient-specific primers were designed for each patient and used in semi-nested polymerase chain reaction for the detection of preleukemic clones at birth. RESULTS Clonotypic IGH rearrangements were detected in neonatal blood spots of 54.2% of patients (13/24). In two cases with double IGH rearrangements detected at diagnosis, only one rearrangement was present at birth, while in the third case both leukemic rearrangements were detected in neonatal blood. Guthrie card-positive findings were significantly more frequent in children ≤5 years of age than in older children (p = 0.011). Regarding patients' characteristics at birth and at diagnosis, Guthrie card-positivity was not associated with sex, birth weight and mother's age, as well as with white blood cell count, percentage of bone marrow blasts, immunophenotype and the presence of ETV6/RUNX1 and TCF3/PBX1 fusion genes at diagnosis. CONCLUSION Our study confirms that a large proportion of childhood BCP-ALL originates in utero, regardless of the molecular subtype defined by chromosomal aberrations. The observed trend toward younger age at diagnosis in Guthrie card-positive versus Guthrie card-negative patients implies that the age at diagnosis depends on the presence of preleukemic clone at birth, as well as on the timing of postnatal transforming genetic events.
Collapse
Affiliation(s)
- Natasa Kacanski
- Institute for Child and Youth Health Care of Vojvodina, Novi Sad, Serbia
| | - Jovanka Kolarovic
- Institute for Child and Youth Health Care of Vojvodina, Novi Sad, Serbia
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana Kostic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Janic
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Teodora Karan-Djurasevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Hansen MH, Cédile O, Abildgaard N, Nyvold CG. The potential of 3rd-generation nanopore sequencing for B-cell clonotyping in lymphoproliferative disorders. EJHAEM 2024; 5:290-293. [PMID: 38406528 PMCID: PMC10887334 DOI: 10.1002/jha2.815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 02/27/2024]
Abstract
Lymphoid malignancies are characterized by clonal cell expansion, often identifiable by unique immunoglobulin rearrangements. Heavy (IGH) and light-chain gene usage offers diagnostic insights and enables sensitive residual disease detection via next-generation sequencing. With its adaptable throughput and variable read lengths, Oxford Nanopore thirdgeneration sequencing now holds promise for clonotyping. This study analyzed CD138+ plasma-cell DNA from eight multiple myeloma patients, comparing clonotyping performance between Nanopore sequencing, Illumina MiSeq, and Ion Torrent S5. We demonstrated clonotype consistency across platforms through Smith-Waterman local alignment of nanopore reads. The mean clonal percentage of IGH V and J gene usage in the CD138+ cells was 69% for Nanopore, 67% for S5, and 76% for MiSeq. When aligned with known clonotypes, clonal cells averaged a 91% similarity, exceeding 85%. In summary, Nanopore sequencing, with its capacity for generating millions of high-quality reads, proves effective for detecting clonal IGH rearrangements. This versatile platform offers the potential for measuring residual disease down to a sensitivity level of 10-6 at a lower cost, marking a significant advancement in clonotyping techniques.
Collapse
Affiliation(s)
- Marcus H. Hansen
- Haematology‐Pathology Research Laboratory, Research Unit of HaematologyDepartment of Haematology, and Research Unit of PathologyDepartment of PathologyUniversity of Southern Denmark and Odense University HospitalOdenseDenmark
| | - Oriane Cédile
- Haematology‐Pathology Research Laboratory, Research Unit of HaematologyDepartment of Haematology, and Research Unit of PathologyDepartment of PathologyUniversity of Southern Denmark and Odense University HospitalOdenseDenmark
- OPEN, Odense Patient data Explorative Network, Odense University HospitalOdenseDenmark
| | - Niels Abildgaard
- Haematology‐Pathology Research Laboratory, Research Unit of HaematologyDepartment of Haematology, and Research Unit of PathologyDepartment of PathologyUniversity of Southern Denmark and Odense University HospitalOdenseDenmark
| | - Charlotte G. Nyvold
- Haematology‐Pathology Research Laboratory, Research Unit of HaematologyDepartment of Haematology, and Research Unit of PathologyDepartment of PathologyUniversity of Southern Denmark and Odense University HospitalOdenseDenmark
- OPEN, Odense Patient data Explorative Network, Odense University HospitalOdenseDenmark
| |
Collapse
|
4
|
Kovach AE, Wood BL. Updates on lymphoblastic leukemia/lymphoma classification and minimal/measurable residual disease analysis. Semin Diagn Pathol 2023; 40:457-471. [PMID: 37953192 DOI: 10.1053/j.semdp.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Lymphoblastic leukemia/lymphoma (ALL/LBL), especially certain subtypes, continues to confer morbidity and mortality despite significant therapeutic advances. The pathologic classification of ALL/LBL, especially that of B-ALL, has recently substantially expanded with the identification of several distinct and prognostically important genetic drivers. These discoveries are reflected in both current classification systems, the World Health Organization (WHO) 5th edition and the new International Consensus Classification (ICC). In this article, novel subtypes of B-ALL are reviewed, including DUX4, MEF2D and ZNF384-rearranged B-ALL; the rare pediatric entity B-ALL with TLF3::HLF, now added to the classifications, is discussed; updates to the category of B-ALL with BCR::ABL1-like features (Ph-like B-ALL) are summarized; and emerging genetic subtypes of T-ALL are presented. The second half of the article details current approaches to minimal/measurable residual disease (MRD) detection in B-ALL and T-ALL and presents anticipated challenges to current approaches in the burgeoning era of antigen-directed immunotherapy.
Collapse
Affiliation(s)
- Alexandra E Kovach
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Højlund EL, Cédile O, Larsen TS, Vimalathas G, Møller MB, Hansen MH, Nyvold CG. Cell-free DNA for detection of clonal B cells in diffuse large B cell lymphoma by sequencing. Int J Lab Hematol 2023; 45:735-742. [PMID: 37350020 DOI: 10.1111/ijlh.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/02/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma in the western world. It is highly heterogeneous with a variable clinical course, but curable with chemo-immunotherapy in up to 70% of all cases. The lymphoma presents in lymph nodes and/or extranodal lymphoid tissue, and the diagnosis is based on invasive procedures for histopathologic evaluation. METHODS In this technical study, we evaluated cell-free DNA (cfDNA) from blood plasma to detect clonal B cells in patients with DLBCL using rearranged immunoglobulin heavy chain gene as targets by next-generation sequencing. Clonal B cell sequences and frequencies were determined from blood plasma cfDNA and cellular DNA from matched excised lymphoma tissues and mononuclear cells isolated from diagnostic bone marrow and blood samples from 15 patients. RESULTS We showed that identical clonal rearrangements could be detected in blood plasma and excised lymphoma tissue and that plasma cfDNA was superior in detecting clonal rearrangements compared to blood or bone marrow-derived cellular DNA. CONCLUSION These findings consolidate the role of blood plasma as a reliable and easily accessible source for detecting neoplastic cells in DLBCL.
Collapse
Affiliation(s)
- Elisabeth Luna Højlund
- Haematology-Pathology Research Laboratory, Research Unit of Haematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Oriane Cédile
- Haematology-Pathology Research Laboratory, Research Unit of Haematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Thomas Stauffer Larsen
- Haematology-Pathology Research Laboratory, Research Unit of Haematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- Department of Haematology, Odense University Hospital, Odense, Denmark
| | - Gayaththri Vimalathas
- Haematology-Pathology Research Laboratory, Research Unit of Haematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Michael Boe Møller
- Haematology-Pathology Research Laboratory, Research Unit of Haematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Marcus Høy Hansen
- Haematology-Pathology Research Laboratory, Research Unit of Haematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Haematology-Pathology Research Laboratory, Research Unit of Haematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| |
Collapse
|
6
|
Kelm M, Darzentas F, Darzentas N, Kotrova M, Wessels W, Bendig S, Baldus CD, Lettau M, Gökbuget N, Kabelitz D, Brüggemann M, Chitadze G. Dominant T-cell Receptor Delta Rearrangements in B-cell Precursor Acute Lymphoblastic Leukemia: Leukemic Markers or Physiological γδ T Repertoire? Hemasphere 2023; 7:e948. [PMID: 37670805 PMCID: PMC10476800 DOI: 10.1097/hs9.0000000000000948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/20/2023] [Indexed: 09/07/2023] Open
Affiliation(s)
- Miriam Kelm
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Franziska Darzentas
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Nikos Darzentas
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Michaela Kotrova
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Wiebke Wessels
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Sonja Bendig
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Claudia D. Baldus
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Marcus Lettau
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Germany
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Germany
| | - Nicola Gökbuget
- Department of Medicine II, Goethe University Hospital, Frankfurt, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Germany
| | - Monika Brüggemann
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Guranda Chitadze
- Medical Department II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Germany
- University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| |
Collapse
|
7
|
Marx A, Osváth M, Szikora B, Pipek O, Csabai I, Nagy Á, Bödör C, Matula Z, Nagy G, Bors A, Uher F, Mikala G, Vályi-Nagy I, Kacskovics I. Liquid biopsy-based monitoring of residual disease in multiple myeloma by analysis of the rearranged immunoglobulin genes-A feasibility study. PLoS One 2023; 18:e0285696. [PMID: 37235573 DOI: 10.1371/journal.pone.0285696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The need for sensitive monitoring of minimal/measurable residual disease (MRD) in multiple myeloma emerged as novel therapies led to deeper responses. Moreover, the potential benefits of blood-based analyses, the so-called liquid biopsy is prompting more and more studies to assess its feasibility. Considering these recent demands, we aimed to optimize a highly sensitive molecular system based on the rearranged immunoglobulin (Ig) genes to monitor MRD from peripheral blood. We analyzed a small group of myeloma patients with the high-risk t(4;14) translocation, using next-generation sequencing of Ig genes and droplet digital PCR of patient-specific Ig heavy chain (IgH) sequences. Moreover, well established monitoring methods such as multiparametric flow cytometry and RT-qPCR of the fusion transcript IgH::MMSET (IgH and multiple myeloma SET domain-containing protein) were utilized to evaluate the feasibility of these novel molecular tools. Serum measurements of M-protein and free light chains together with the clinical assessment by the treating physician served as routine clinical data. We found significant correlation between our molecular data and clinical parameters, using Spearman correlations. While the comparisons of the Ig-based methods and the other monitoring methods (flow cytometry, qPCR) were not statistically evaluable, we found common trends in their target detection. Regarding longitudinal disease monitoring, the applied methods yielded complementary information thus increasing the reliability of MRD evaluation. We also detected indications of early relapse before clinical signs, although this implication needs further verification in a larger patient cohort.
Collapse
Affiliation(s)
- Anita Marx
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Magdolna Osváth
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bence Szikora
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Pipek
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ákos Nagy
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Zsolt Matula
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - Ginette Nagy
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - András Bors
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - Ferenc Uher
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - Gábor Mikala
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - István Vályi-Nagy
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - Imre Kacskovics
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
8
|
Cédile O, Hansen MH, Dahlmann SK, Kristensen TK, Abildgaard N, Nyvold CG. Reproducibility of low-level residual myeloma immunoglobulin detection using ultra-deep sequencing. Exp Hematol 2023; 119-120:14-20. [PMID: 36708872 DOI: 10.1016/j.exphem.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Multiple myeloma, a mature B-cell neoplasm, is the second most common hematologic malignancy. Despite advancements in treatment, the disease remains incurable, with more than 100,000 annual deaths worldwide. As recommended by the International Myeloma Working Group, measurable residual disease (MRD) should be addressed at a 10-5 sensitivity level or beyond for practical purposes. Next-generation sequencing (NGS) has provided new opportunities with deep sequencing of clonal rearrangements of the immunoglobulin heavy chain (IGH) locus in B-cell malignancies. Although the ability to resolve one cancerous cell in a million other B cells is becoming attractive as a prognostic indicator in sustained patients who are MRD-negative, reaching consistent sensitivity levels is challenging because of sample stochasticity and the substantial amount of deoxyribonucleic acid (DNA) required for library preparation. Thus, in the presented study, we implemented ultra-deep sequencing of rearranged IGH to investigate the reproducibility and consistency aimed at the 10-5 sensitivity level. In this controlled setup, our data provided stable MRD detection of 1.2 clonal cells per 100,000 analyzed cells and longitudinal reproducibility. We also demonstrated a low false-negative rate using 4-5 replicates and 700-800 ng DNA per sequencing replicate. In conclusion, adding an internal control to the replicates enabled clonal cell normalization for MRD evaluation as a stable reference. These findings may guide MRD-level reporting and comparisons between laboratories.
Collapse
Affiliation(s)
- Oriane Cédile
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Marcus Høy Hansen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark.
| | - Sara Kamuk Dahlmann
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Thomas Kielsgaard Kristensen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Clinical Development, Odense University Hospital, Odense, Denmark
| | - Niels Abildgaard
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| |
Collapse
|
9
|
Darzentas F, Szczepanowski M, Kotrová M, Hartmann A, Beder T, Gökbuget N, Schwartz S, Bastian L, Baldus CD, Pál K, Darzentas N, Brüggemann M. Insights into IGH clonal evolution in BCP-ALL: frequency, mechanisms, associations, and diagnostic implications. Front Immunol 2023; 14:1125017. [PMID: 37143651 PMCID: PMC10151743 DOI: 10.3389/fimmu.2023.1125017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction The malignant transformation leading to a maturation arrest in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) occurs early in B-cell development, in a pro-B or pre-B cell, when somatic recombination of variable (V), diversity (D), and joining (J) segment immunoglobulin (IG) genes and the B-cell rescue mechanism of VH replacement might be ongoing or fully active, driving clonal evolution. In this study of newly diagnosed BCP-ALL, we sought to understand the mechanistic details of oligoclonal composition of the leukemia at diagnosis, clonal evolution during follow-up, and clonal distribution in different hematopoietic compartments. Methods Utilizing high-throughput sequencing assays and bespoke bioinformatics we identified BCP-ALL-derived clonally-related IGH sequences by their shared 'DNJ-stem'. Results We introduce the concept of 'marker DNJ-stem' to cover the entirety of, even lowly abundant, clonally-related family members. In a cohort of 280 adult patients with BCP-ALL, IGH clonal evolution at diagnosis was identified in one-third of patients. The phenomenon was linked to contemporaneous recombinant and editing activity driven by aberrant ongoing DH/VH-DJH recombination and VH replacement, and we share insights and examples for both. Furthermore, in a subset of 167 patients with molecular subtype allocation, high prevalence and high degree of clonal evolution driven by ongoing DH/VH-DJH recombination were associated with the presence of KMT2A gene rearrangements, while VH replacements occurred more frequently in Ph-like and DUX4 BCP-ALL. Analysis of 46 matched diagnostic bone marrow and peripheral blood samples showed a comparable clonal and clonotypic distribution in both hematopoietic compartments, but the clonotypic composition markedly changed in longitudinal follow-up analysis in select cases. Thus, finally, we present cases where the specific dynamics of clonal evolution have implications for both the initial marker identification and the MRD monitoring in follow-up samples. Discussion Consequently, we suggest to follow the marker DNJ-stem (capturing all family members) rather than specific clonotypes as the MRD target, as well as to follow both VDJH and DJH family members since their respective kinetics are not always parallel. Our study further highlights the intricacy, importance, and present and future challenges of IGH clonal evolution in BCP-ALL.
Collapse
Affiliation(s)
- Franziska Darzentas
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Monika Szczepanowski
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Michaela Kotrová
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alina Hartmann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH-ALL” (KFO 5010/1), funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Bonn, Germany
| | - Thomas Beder
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nicola Gökbuget
- Department of Medicine II, Hematology/Oncology, Goethe University Hospital, Frankfurt/M, Germany
| | - Stefan Schwartz
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lorenz Bastian
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH-ALL” (KFO 5010/1), funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Bonn, Germany
| | - Claudia Dorothea Baldus
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH-ALL” (KFO 5010/1), funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Bonn, Germany
| | - Karol Pál
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Nikos Darzentas
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- *Correspondence: Nikos Darzentas,
| | - Monika Brüggemann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH-ALL” (KFO 5010/1), funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Bonn, Germany
| |
Collapse
|
10
|
Ho C, Rothberg PG. Next-Generation Sequencing-Based Antigen-Receptor Gene Clonality Assays: Will They Become the Clinical Standard? J Mol Diagn 2021; 23:1043-1046. [PMID: 34293488 DOI: 10.1016/j.jmoldx.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Caleb Ho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Paul G Rothberg
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|