1
|
Wang Q, Zhou Q, Liu H, Li J, Jiang Y. Chromosome-level genome assembly of a critically endangered species Leuciscus chuanchicus. Sci Data 2025; 12:441. [PMID: 40089515 PMCID: PMC11910599 DOI: 10.1038/s41597-025-04787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Leuciscus chuanchicus, a critically endangered cyprinid endemic in the Yellow River, represents an evolutionary significant lineage within Leuciscinae. However, conservation efforts for this species have been hindered by the lack of genetic and genomic resources. Here we reported a high-quality chromosome-level genome of L. chuanchicus by combining Illumina reads, PacBio HiFi long reads and Hi-C data. The assembled genome size was 1.16 Gb, with a contig N50 size of 31,116,631 bp and a scaffold N50 size of 43,855,677 bp. The resulting 130 scaffolds were further clustered and ordered into 25 chromosomes based on the Hi-C data, representing 97.84% of the assembled sequences. The genome contained 60.36% repetitive sequences and 35,014 noncoding RNAs. A total of 31,196 protein-coding genes were predicted, of which 28,323 (90.79%) were functionally annotated. The BUSCO and OMArk revealed 97.6% and 91.28% completion rates, respectively. This study assembled a high-quality genome of L. chuanchicus, and provided fundamental genomic resources for investigating the molecular mechanism and evolution of the Leuciscinae.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Qi Zhou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Hongyan Liu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jiongtang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yanliang Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China.
| |
Collapse
|
2
|
Fuentes L, Guevara-Suarez M, Zambrano MM, Jiménez P, Duitama J, Restrepo S. Genetic diversity of Anadara tuberculosa in two localities of the Colombian Pacific Coast. Sci Rep 2024; 14:28467. [PMID: 39557973 PMCID: PMC11574214 DOI: 10.1038/s41598-024-78869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
Piangua, Anadara tuberculosa, is an economically important mollusk for the human population living on the Colombian Pacific Coast. In the last years, the demand and exploitation of this mollusk have increased, putting it at risk to the point of being endangered. This research aimed to identify the genetic diversity and population structure of piangua in two localities on the Pacific Coast of Colombia. We assembled a chromosome-level genome using PacBio-Hifi and Arima sequencing. We obtained 274 scaffolds with an N50 of 45.42 Mbp, a total size of 953 Mbp, and a completeness of 91% based on BUSCO scores. The transposable elements accounted for 30.29% of the genome, and 24,317 genes were annotated. Genome-guided variant calling for 89 samples using DArT sequencing data delivered 4,825 bi-allelic SNPs, which supported genetic diversity and population structure analyses. Data showed that the piangua populations in the two localities were under expansion events more than 100k years ago. However, results also showed a reduction in genetic diversity, as evidenced by the loss of heterozygosity, which may be caused by high levels of inbreeding, probably due to a recent overexploitation. Furthermore, although we evidenced gene flow between the two localities, there is also a subtle geographical population structure between the two localities and among mangroves in one of the localities. This is the first study in Colombia that provides relevant genetic information on piangua to lay the foundations for conservation strategies.
Collapse
Affiliation(s)
- Luis Fuentes
- Laboratory of Mycology and Phytopathology (LAMFU), Department of Biological Sciences, Department of Food and Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
- Applied genomics research group, Vice president of Research, Universidad de Los Andes, Bogotá, Colombia
| | - Marcela Guevara-Suarez
- Laboratory of Mycology and Phytopathology (LAMFU), Department of Biological Sciences, Department of Food and Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
- Applied genomics research group, Vice president of Research, Universidad de Los Andes, Bogotá, Colombia
| | | | - Pedro Jiménez
- Faculty of Basic and Applied Sciences, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Jorge Duitama
- Department of System and Computing Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Silvia Restrepo
- Laboratory of Mycology and Phytopathology (LAMFU), Department of Biological Sciences, Department of Food and Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia.
- Boyce Thompson Institute, Ithaca, NY, USA.
| |
Collapse
|
3
|
Kliver S, Houck ML, Perelman PL, Totikov A, Tomarovsky A, Dudchenko O, Omer AD, Colaric Z, Weisz D, Aiden EL, Chan S, Hastie A, Komissarov A, Ryder OA, Graphodatsky A, Johnson WE, Maldonado JE, Pukazhenthi BS, Marinari PE, Wildt DE, Koepfli KP. Chromosome-length genome assembly and karyotype of the endangered black-footed ferret (Mustela nigripes). J Hered 2023; 114:539-548. [PMID: 37249392 PMCID: PMC10848218 DOI: 10.1093/jhered/esad035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/27/2023] [Indexed: 05/31/2023] Open
Abstract
The black-footed ferret (Mustela nigripes) narrowly avoided extinction to become an oft-cited example of the benefits of intensive management, research, and collaboration to save a species through ex situ conservation breeding and reintroduction into its former range. However, the species remains at risk due to possible inbreeding, disease susceptibility, and multiple fertility challenges. Here, we report the de novo genome assembly of a male black-footed ferret generated through a combination of linked-read sequencing, optical mapping, and Hi-C proximity ligation. In addition, we report the karyotype for this species, which was used to anchor and assign chromosome numbers to the chromosome-length scaffolds. The draft assembly was ~2.5 Gb in length, with 95.6% of it anchored to 19 chromosome-length scaffolds, corresponding to the 2n = 38 chromosomes revealed by the karyotype. The assembly has contig and scaffold N50 values of 148.8 kbp and 145.4 Mbp, respectively, and is up to 96% complete based on BUSCO analyses. Annotation of the assembly, including evidence from RNA-seq data, identified 21,406 protein-coding genes and a repeat content of 37.35%. Phylogenomic analyses indicated that the black-footed ferret diverged from the European polecat/domestic ferret lineage 1.6 million yr ago. This assembly will enable research on the conservation genomics of black-footed ferrets and thereby aid in the further restoration of this endangered species.
Collapse
Affiliation(s)
- Sergei Kliver
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, Copenhagen, Denmark
| | - Marlys L Houck
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA, United States
| | - Polina L Perelman
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Azamat Totikov
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Andrey Tomarovsky
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX, United States
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Zane Colaric
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Saki Chan
- Department of Research and Development, Bionano Genomics, San Diego, CA, United States
| | - Alex Hastie
- Department of Research and Development, Bionano Genomics, San Diego, CA, United States
| | - Aleksey Komissarov
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, Russia
| | - Oliver A Ryder
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA, United States
| | - Alexander Graphodatsky
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Warren E Johnson
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Front Royal, VA, United States
- The Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, Suitland, MD, United States
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Loyola University Maryland, Baltimore, MD, United States
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Budhan S Pukazhenthi
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Paul E Marinari
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - David E Wildt
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Front Royal, VA, United States
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, United States
| |
Collapse
|
4
|
Poisson W, Prunier J, Carrier A, Gilbert I, Mastromonaco G, Albert V, Taillon J, Bourret V, Droit A, Côté SD, Robert C. Chromosome-level assembly of the Rangifer tarandus genome and validation of cervid and bovid evolution insights. BMC Genomics 2023; 24:142. [PMID: 36959567 PMCID: PMC10037892 DOI: 10.1186/s12864-023-09189-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Genome assembly into chromosomes facilitates several analyses including cytogenetics, genomics and phylogenetics. Despite rapid development in bioinformatics, however, assembly beyond scaffolds remains challenging, especially in species without closely related well-assembled and available reference genomes. So far, four draft genomes of Rangifer tarandus (caribou or reindeer, a circumpolar distributed cervid species) have been published, but none with chromosome-level assembly. This emblematic northern species is of high interest in ecological studies and conservation since most populations are declining. RESULTS We have designed specific probes based on Oligopaint FISH technology to upgrade the latest published reindeer and caribou chromosome-level genomes. Using this oligonucleotide-based method, we found six mis-assembled scaffolds and physically mapped 68 of the largest scaffolds representing 78% of the most recent R. tarandus genome assembly. Combining physical mapping and comparative genomics, it was possible to document chromosomal evolution among Cervidae and closely related bovids. CONCLUSIONS Our results provide validation for the current chromosome-level genome assembly as well as resources to use chromosome banding in studies of Rangifer tarandus.
Collapse
Affiliation(s)
- William Poisson
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Québec, QC, Canada
- Réseau Québécois en reproduction, QC, Saint-Hyacinthe, Canada
| | - Julien Prunier
- Département de biochimie, microbiologie et bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada
| | - Alexandra Carrier
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Québec, QC, Canada
- Réseau Québécois en reproduction, QC, Saint-Hyacinthe, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Québec, QC, Canada
- Réseau Québécois en reproduction, QC, Saint-Hyacinthe, Canada
| | | | - Vicky Albert
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Québec, QC, Canada
| | - Joëlle Taillon
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Québec, QC, Canada
| | - Vincent Bourret
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Québec, QC, Canada
| | - Arnaud Droit
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Steeve D Côté
- Caribou Ungava, Département de biologie and Centre d'études nordiques, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada.
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Québec, QC, Canada.
- Réseau Québécois en reproduction, QC, Saint-Hyacinthe, Canada.
| |
Collapse
|
5
|
Yakupova A, Tomarovsky A, Totikov A, Beklemisheva V, Logacheva M, Perelman PL, Komissarov A, Dobrynin P, Krasheninnikova K, Tamazian G, Serdyukova NA, Rayko M, Bulyonkova T, Cherkasov N, Pylev V, Peterfeld V, Penin A, Balanovska E, Lapidus A, OBrien SJ, Graphodatsky A, Koepfli KP, Kliver S. Chromosome-Length Assembly of the Baikal Seal (Pusa sibirica) Genome Reveals a Historically Large Population Prior to Isolation in Lake Baikal. Genes (Basel) 2023; 14:genes14030619. [PMID: 36980891 PMCID: PMC10048373 DOI: 10.3390/genes14030619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Pusa sibirica, the Baikal seal, is the only extant, exclusively freshwater, pinniped species. The pending issue is, how and when they reached their current habitat—the rift lake Baikal, more than three thousand kilometers away from the Arctic Ocean. To explore the demographic history and genetic diversity of this species, we generated a de novo chromosome-length assembly, and compared it with three closely related marine pinniped species. Multiple whole genome alignment of the four species compared with their karyotypes showed high conservation of chromosomal features, except for three large inversions on chromosome VI. We found the mean heterozygosity of the studied Baikal seal individuals was relatively low (0.61 SNPs/kbp), but comparable to other analyzed pinniped samples. Demographic reconstruction of seals revealed differing trajectories, yet remarkable variations in Ne occurred during approximately the same time periods. The Baikal seal showed a significantly more severe decline relative to other species. This could be due to the difference in environmental conditions encountered by the earlier populations of Baikal seals, as ice sheets changed during glacial–interglacial cycles. We connect this period to the time of migration to Lake Baikal, which occurred ~3–0.3 Mya, after which the population stabilized, indicating balanced habitat conditions.
Collapse
Affiliation(s)
- Aliya Yakupova
- Computer Technologies Laboratory, ITMO University, 19701 Saint Petersburg, Russia
- Correspondence: (A.Y.); (A.G.)
| | - Andrey Tomarovsky
- Computer Technologies Laboratory, ITMO University, 19701 Saint Petersburg, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Azamat Totikov
- Computer Technologies Laboratory, ITMO University, 19701 Saint Petersburg, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Violetta Beklemisheva
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Maria Logacheva
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Polina L. Perelman
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Aleksey Komissarov
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, 9 Ulitsa Lomonosova, 191002 Saint Petersburg, Russia
| | - Pavel Dobrynin
- Computer Technologies Laboratory, ITMO University, 19701 Saint Petersburg, Russia
- Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, 119991 Moscow, Russia
| | | | - Gaik Tamazian
- Centre for Computational Biology, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Natalia A. Serdyukova
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Mike Rayko
- Center for Bioinformatics and Algorithmic Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Tatiana Bulyonkova
- Laboratory of Mixed Computations, A.P. Ershov Institute of Informatics Systems SB RAS, 630090 Novosibirsk, Russia
| | - Nikolay Cherkasov
- Centre for Computational Biology, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Vladimir Pylev
- Laboratory of Human Population Genetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Vladimir Peterfeld
- Baikal Branch of State Research and Industrial Center of Fisheries, 670034 Ulan-Ude, Russia
| | - Aleksey Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia
| | - Elena Balanovska
- Laboratory of Human Population Genetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Alla Lapidus
- Center for Bioinformatics and Algorithmic Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - DNA Zoo Consortium
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen J. OBrien
- Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, NOVA Southeastern University, Fort Lauderdale, FL 33004, USA
| | - Alexander Graphodatsky
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Correspondence: (A.Y.); (A.G.)
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, 1500 Remount Road, Front Royal, VA 22630, USA
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA
| | - Sergei Kliver
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, 5A, Oester Farimagsgade, 1353 Copenhagen, Denmark
| |
Collapse
|
6
|
Bursell MG, Dikow RB, Figueiró HV, Dudchenko O, Flanagan JP, Aiden EL, Goossens B, Nathan SK, Johnson WE, Koepfli KP, Frandsen PB. Whole genome analysis of clouded leopard species reveals an ancient divergence and distinct demographic histories. iScience 2022; 25:105647. [PMID: 36590460 PMCID: PMC9801239 DOI: 10.1016/j.isci.2022.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/08/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Similar to other apex predator species, populations of mainland (Neofelis nebulosa) and Sunda (Neofelis diardi) clouded leopards are declining. Understanding their patterns of genetic variation can provide critical insights on past genetic erosion and a baseline for understanding their long-term conservation needs. As a step toward this goal, we present draft genome assemblies for the two clouded leopard species to quantify their phylogenetic divergence, genome-wide diversity, and historical population trends. We estimate that the two species diverged 5.1 Mya, much earlier than previous estimates of 1.41 Mya and 2.86 Mya, suggesting they separated when Sundaland was becoming increasingly isolated from mainland Southeast Asia. The Sunda clouded leopard displays a distinct and reduced effective population size trajectory, consistent with a lower genome-wide heterozygosity and SNP density, relative to the mainland clouded leopard. Our results provide new insights into the evolutionary history and genetic health of this unique lineage of felids.
Collapse
Affiliation(s)
- Madeline G. Bursell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560, USA
| | - Rebecca B. Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560, USA
| | - Henrique V. Figueiró
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | | | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
- Departments of Computer Science and Computational and Applied Mathematics, Rice University,Houston, TX, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
| | - Benoit Goossens
- Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff, UK
- Danau Girang Field Centre, c/o Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia
| | | | - Warren E. Johnson
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
- The Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, Suitland, MD, USA
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Loyola University Maryland, Baltimore, MD, USA
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, USA
| | - Paul B. Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
7
|
Wilder AP, Dudchenko O, Curry C, Korody M, Turbek SP, Daly M, Misuraca A, Gaojianyong WANG, Khan R, Weisz D, Fronczek J, Aiden EL, Houck ML, Shier DM, Ryder OA, Steiner CC. A chromosome-length reference genome for the endangered Pacific pocket mouse reveals recent inbreeding in a historically large population. Genome Biol Evol 2022; 14:6650481. [PMID: 35894178 PMCID: PMC9348616 DOI: 10.1093/gbe/evac122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
High-quality reference genomes are fundamental tools for understanding population history, and can provide estimates of genetic and demographic parameters relevant to the conservation of biodiversity. The federally endangered Pacific pocket mouse (PPM), which persists in three small, isolated populations in southern California, is a promising model for studying how demographic history shapes genetic diversity, and how diversity in turn may influence extinction risk. To facilitate these studies in PPM, we combined PacBio HiFi long reads with Omni-C and Hi-C data to generate a de novo genome assembly, and annotated the genome using RNAseq. The assembly comprised 28 chromosome-length scaffolds (N50 = 72.6 MB) and the complete mitochondrial genome, and included a long heterochromatic region on chromosome 18 not represented in the previously available short-read assembly. Heterozygosity was highly variable across the genome of the reference individual, with 18% of windows falling in runs of homozygosity (ROH) >1 MB, and nearly 9% in tracts spanning >5 MB. Yet outside of ROH, heterozygosity was relatively high (0.0027), and historical Ne estimates were large. These patterns of genetic variation suggest recent inbreeding in a formerly large population. Currently the most contiguous assembly for a heteromyid rodent, this reference genome provides insight into the past and recent demographic history of the population, and will be a critical tool for management and future studies of outbreeding depression, inbreeding depression, and genetic load.
Collapse
Affiliation(s)
- Aryn P Wilder
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, USA.,Center for Theoretical Biological Physics and Department of Computer Science, Rice University, USA
| | - Caitlin Curry
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, USA
| | - Marisa Korody
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, USA
| | - Sheela P Turbek
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, USA.,Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | | | - Ann Misuraca
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, USA
| | - W A N G Gaojianyong
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ruqayya Khan
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - Julie Fronczek
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, USA.,Center for Theoretical Biological Physics and Department of Computer Science, Rice University, USA.,UWA School of Agriculture and Environment, The University of Western Australia, Australia.,Broad Institute of MIT and Harvard, USA.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, China
| | - Marlys L Houck
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, USA
| | - Debra M Shier
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, USA.,Department of Ecology & Evolutionary Biology, University of California Los Angeles, USA
| | - Oliver A Ryder
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, USA
| | - Cynthia C Steiner
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, USA
| |
Collapse
|
8
|
Genomics of Adaptation and Speciation. Genes (Basel) 2022; 13:genes13071187. [PMID: 35885970 PMCID: PMC9321343 DOI: 10.3390/genes13071187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
|
9
|
de Ferran V, Figueiró HV, de Jesus Trindade F, Smith O, Sinding MHS, Trinca CS, Lazzari GZ, Veron G, Vianna JA, Barbanera F, Kliver S, Serdyukova N, Bulyonkova T, Ryder OA, Gilbert MTP, Koepfli KP, Eizirik E. Phylogenomics of the world's otters. Curr Biol 2022; 32:3650-3658.e4. [PMID: 35779528 DOI: 10.1016/j.cub.2022.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/18/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Comparative whole-genome analyses hold great power to illuminate commonalities and differences in the evolution of related species that share similar ecologies. The mustelid subfamily Lutrinae includes 13 currently recognized extant species of otters,1-5 a semiaquatic group whose evolutionary history is incompletely understood. We assembled a dataset comprising 24 genomes from all living otter species, 14 of which were newly sequenced. We used this dataset to infer phylogenetic relationships and divergence times, to characterize patterns of genome-wide genealogical discordance, and to investigate demographic history and current genomic diversity. We found that genera Lutra, Aonyx, Amblonyx, and Lutrogale form a coherent clade that should be synonymized under Lutra, simplifying the taxonomic structure of the subfamily. The poorly known tropical African Aonyx congicus and the more widespread Aonyx capensis were found to be reciprocally monophyletic (having diverged 440,000 years ago), supporting the validity of the former as a distinct species. We observed variable changes in effective population sizes over time among otters within and among continents, although several species showed similar trends of expansions and declines during the last 100,000 years. This has led to different levels of genomic diversity assessed by overall heterozygosity, genome-wide SNV density, and run of homozygosity burden. Interestingly, there were cases in which diversity metrics were consistent with the current threat status (mostly based on census size), highlighting the potential of genomic data for conservation assessment. Overall, our results shed light on otter evolutionary history and provide a framework for further in-depth comparative genomic studies targeting this group.
Collapse
Affiliation(s)
- Vera de Ferran
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681, prédio 12C, sala 134, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Henrique Vieira Figueiró
- Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA
| | - Fernanda de Jesus Trindade
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681, prédio 12C, sala 134, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Oliver Smith
- Center for Evolutionary Hologenomics, The GLOBE Institute - University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1353, Denmark
| | - Mikkel-Holger S Sinding
- Center for Evolutionary Hologenomics, The GLOBE Institute - University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1353, Denmark
| | - Cristine S Trinca
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681, prédio 12C, sala 134, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Gabriele Zenato Lazzari
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681, prédio 12C, sala 134, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Géraldine Veron
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, 75231 Paris Cedex 5, France
| | - Juliana A Vianna
- Millennium Institute Center for Genome Regulation (CRG), Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuna Mackenna 4860, Santiago 782-0436, Chile
| | - Filippo Barbanera
- Department of Biology, University of Pisa, Via A. Volta 4, 56126 Pisa, Italy
| | - Sergei Kliver
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Acad. Lavrentiev Ave, 630090 Novosibirsk, Russia
| | - Natalia Serdyukova
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Acad. Lavrentiev Ave, 630090 Novosibirsk, Russia
| | - Tatiana Bulyonkova
- A. P. Ershov Institute of Informatics Systems SB RAS, 6 Acad. Lavrentiev Ave, 630090 Novosibirsk, Russia
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA; Department of Evolution, Behavior, and Ecology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute - University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1353, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Klaus-Peter Koepfli
- Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA; Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, USA.
| | - Eduardo Eizirik
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681, prédio 12C, sala 134, Porto Alegre, Rio Grande do Sul 90619-900, Brazil; Instituto Pró-Carnívoros, Av. Horácio Netto, 1030 - Parque Edmundo Zanoni, Atibaia, São Paulo 12945-010, Brazil.
| |
Collapse
|
10
|
Derežanin L, Blažytė A, Dobrynin P, Duchêne DA, Grau JH, Jeon S, Kliver S, Koepfli KP, Meneghini D, Preick M, Tomarovsky A, Totikov A, Fickel J, Förster DW. Multiple types of genomic variation contribute to adaptive traits in the mustelid subfamily Guloninae. Mol Ecol 2022; 31:2898-2919. [PMID: 35334142 DOI: 10.1111/mec.16443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Abstract
Species of the mustelid subfamily Guloninae inhabit diverse habitats on multiple continents, and occupy a variety of ecological niches. They differ in feeding ecologies, reproductive strategies and morphological adaptations. To identify candidate loci associated with adaptations to their respective environments, we generated a de novo assembly of the tayra (Eira barbara), the earliest diverging species in the subfamily, and compared this with the genomes available for the wolverine (Gulo gulo) and the sable (Martes zibellina). Our comparative genomic analyses included searching for signs of positive selection, examining changes in gene family sizes, as well as searching for species-specific structural variants (SVs). Among candidate loci associated with phenotypic traits, we observed many related to diet, body condition and reproduction. For example, for the tayra, which has an atypical gulonine reproductive strategy of aseasonal breeding, we observe species-specific changes in many pregnancy-related genes. For the wolverine, a circumpolar hypercarnivore that must cope with seasonal food scarcity, we observed many changes in genes associated with diet and body condition. All types of genomic variation examined (single nucleotide polymorphisms, gene family expansions, structural variants) contributed substantially to the identification of candidate loci. This strongly argues for consideration of variation other than single nucleotide polymorphisms in comparative genomics studies aiming to identify loci of adaptive significance.
Collapse
Affiliation(s)
- Lorena Derežanin
- Leibniz Institute for Zoo and Wildlife Research (IZW, Alfred Kowalke Straße 17, 10315, Berlin, Germany
| | - Asta Blažytė
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST, Ulsan, 44919, Republic of Korea
| | - Pavel Dobrynin
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr, 197101, Saint Petersburg, Russia
| | - David A Duchêne
- Center for Evolutionary Hologenomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark
| | - José Horacio Grau
- amedes Genetics, amedes Medizinische Dienstleistungen GmbH, Jägerstr. 61, 10117, Berlin, Germany
| | - Sungwon Jeon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST, Ulsan, 44919, Republic of Korea.,Clinomics Inc, Ulsan, 44919, Republic of Korea
| | - Sergei Kliver
- Institute of Molecular and Cellular Biology, SB RAS, 8/2 Acad. Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Klaus-Peter Koepfli
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr, 197101, Saint Petersburg, Russia.,Smithsonian-Mason School of Conservation, 1500 Remount Road, Front Royal, VA, 22630, USA.,Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Dorina Meneghini
- Leibniz Institute for Zoo and Wildlife Research (IZW, Alfred Kowalke Straße 17, 10315, Berlin, Germany
| | - Michaela Preick
- Institute for Biochemistry and Biology, Faculty of Mathematics and Natural Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, OT, Germany
| | - Andrey Tomarovsky
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr, 197101, Saint Petersburg, Russia.,Institute of Molecular and Cellular Biology, SB RAS, 8/2 Acad. Lavrentiev Ave, Novosibirsk, 630090, Russia.,Novosibirsk State University, 1 Pirogova str, Novosibirsk, 630090, Russia
| | - Azamat Totikov
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr, 197101, Saint Petersburg, Russia.,Institute of Molecular and Cellular Biology, SB RAS, 8/2 Acad. Lavrentiev Ave, Novosibirsk, 630090, Russia.,Novosibirsk State University, 1 Pirogova str, Novosibirsk, 630090, Russia
| | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research (IZW, Alfred Kowalke Straße 17, 10315, Berlin, Germany.,Institute for Biochemistry and Biology, Faculty of Mathematics and Natural Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, OT, Germany
| | - Daniel W Förster
- Leibniz Institute for Zoo and Wildlife Research (IZW, Alfred Kowalke Straße 17, 10315, Berlin, Germany
| |
Collapse
|