1
|
Hwang SP, Liao H, Barondeau K, Han X, Herbert C, McConie H, Shekar A, Pestov DG, Limbach PA, Chang JT, Denicourt C. TRMT1L-catalyzed m 22G27 on tyrosine tRNA is required for efficient mRNA translation and cell survival under oxidative stress. Cell Rep 2025; 44:115167. [PMID: 39786998 DOI: 10.1016/j.celrep.2024.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/11/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
tRNA modifications are critical for several aspects of their functions, including decoding, folding, and stability. Using a multifaceted approach encompassing eCLIP-seq and nanopore tRNA-seq, we show that the human tRNA methyltransferase TRMT1L interacts with the component of the Rix1 ribosome biogenesis complex and binds to the 28S rRNA as well as to a subset of tRNAs. Mechanistically, we demonstrate that TRMT1L is responsible for catalyzing N2,N2-dimethylguanosine (m22G) solely at position 27 of tRNA-Tyr-GUA. Surprisingly, TRMT1L depletion also impaired the deposition of 3-(3-amino-3-carboxypropyl) uridine (acp3U) and dihydrouridine on tRNA-Tyr-GUA, Cys-GCA, and Ala-CGC. TRMT1L knockout cells have a marked decrease in tRNA-Tyr-GUA levels, coinciding with a reduction in global translation rates and hypersensitivity to oxidative stress. Our results establish TRMT1L as the elusive methyltransferase catalyzing the m22G27 modification on tRNA Tyr, resolving a long-standing gap of knowledge and highlighting its potential role in a tRNA modification circuit crucial for translation regulation and stress response.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Han Liao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Katherine Barondeau
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Xinyi Han
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hunter McConie
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Amirtha Shekar
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dimitri G Pestov
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Sierant M, Szewczyk R, Dziergowska A, Krolewska-Golinska K, Szczupak P, Bernat P, Nawrot B. Studies on the Oxidative Damage of the Wobble 5-Methylcarboxymethyl-2-Thiouridine in the tRNA of Eukaryotic Cells with Disturbed Homeostasis of the Antioxidant System. Int J Mol Sci 2024; 25:12336. [PMID: 39596401 PMCID: PMC11594727 DOI: 10.3390/ijms252212336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
We have previously shown that 2-thiouridine (S2U), either as a single nucleoside or as an element of RNA chain, is effectively desulfurized under applied in vitro oxidative conditions. The chemically induced desulfuration of S2U resulted in two products: 4-pyrimidinone nucleoside (H2U) and uridine (U). Recently, we investigated whether the desulfuration of S2U is a natural process that also occurs in the cells exposed to oxidative stress or whether it only occurs in the test tube during chemical reactions with oxidants at high concentrations. Using different types of eukaryotic cells, such as baker's yeast, human cancer cells, or modified HEK293 cells with an impaired antioxidant system, we confirmed that 5-substituted 2-thiouridines are oxidatively desulfurized in the wobble position of the anticodon of some tRNAs. The quantitative LC-MS/MS-MRMhr analysis of the nucleoside mixtures obtained from the hydrolyzed tRNA revealed the presence of the desulfuration products of mcm5S2U: mcm5H2U and mcm5U modifications. We also observed some amounts of immature cm5S2U, cm5H2U and cm5U products, which may have indicated a disruption of the enzymatic modification pathway at the C5 position of 2-thiouridine. The observed process, which was triggered by oxidative stress in the living cells, could impair the function of 2-thiouridine-containing tRNAs and alter the translation of genetic information.
Collapse
Affiliation(s)
- Malgorzata Sierant
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (K.K.-G.); (P.S.); (B.N.)
| | | | - Agnieszka Dziergowska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Karolina Krolewska-Golinska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (K.K.-G.); (P.S.); (B.N.)
| | - Patrycja Szczupak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (K.K.-G.); (P.S.); (B.N.)
| | - Przemyslaw Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Barbara Nawrot
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (K.K.-G.); (P.S.); (B.N.)
| |
Collapse
|
3
|
Valesyan S, Jora M, Addepalli B, Limbach PA. Stress-induced modification of Escherichia coli tRNA generates 5-methylcytidine in the variable loop. Proc Natl Acad Sci U S A 2024; 121:e2317857121. [PMID: 39495928 PMCID: PMC11572931 DOI: 10.1073/pnas.2317857121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/08/2024] [Indexed: 11/06/2024] Open
Abstract
There has been recent interest in trying to understand the connection between transfer RNA (tRNA) posttranscriptional modifications and changes in-cellular environmental conditions. Here, we report on the identification of the modified nucleoside 5-methylcytidine (m5C) in Escherichia coli tRNAs. This modification was determined to be present at position 49 of tRNA Tyr-QUA-II. Moreover, m5C levels in this tRNA are significantly elevated under high reactive oxygen specieis (ROS) conditions in E. coli cells. We identified the known ribosomal RNA methyltransferase rsmF as the enzyme responsible for m5C synthesis in tRNA and enzyme transcript levels are responsive to elevated levels of ROS in the cell. We further find that changes in m5C levels in this tRNA are not specific to Fenton-like reaction conditions elevating ROS, but heat shock can also induce increased modification of tRNA Tyr-QUA-II. Altogether, this work illustrates how cells adapt to changing environmental conditions through variations in tRNA modification profiles.
Collapse
Affiliation(s)
- Satenik Valesyan
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH45221-0172
| | - Manasses Jora
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH45221-0172
| | - Balasubrahmanyam Addepalli
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH45221-0172
| | - Patrick A. Limbach
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH45221-0172
| |
Collapse
|
4
|
Hwang SP, Liao H, Barondeau K, Han X, Herbert C, McConie H, Shekar A, Pestov D, Limbach PA, Chang JT, Denicourt C. TRMT1L-catalyzed m 2 2G27 on tyrosine tRNA is required for efficient mRNA translation and cell survival under oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591343. [PMID: 39416027 PMCID: PMC11482778 DOI: 10.1101/2024.05.02.591343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
tRNA modifications are critical for several aspects of their functions, including decoding, folding, and stability. Using a multifaceted approach encompassing eCLIP-seq and Nanopore tRNA-seq, we show that the human tRNA methyltransferase TRMT1L interacts with component of the Rix1 ribosome biogenesis complex and binds to the 28S rRNA, as well as to a subset of tRNAs. Mechanistically, we demonstrate that TRMT1L is responsible for catalyzing m2 2G solely at position 27 of tRNA-Tyr-GUA. Surprisingly, TRMT1L depletion also impaired the deposition of acp3U and dihydrouridine on tRNA-Tyr-GUA, Cys-GCA, and Ala-CGC. TRMT1L knockout cells have a marked decrease in tRNA-Tyr-GUA levels, coinciding with a reduction in global translation rates and hypersensitivity to oxidative stress. Our results establish TRMT1L as the elusive methyltransferase catalyzing the m2 2G27 modification on tRNA Tyr, resolving a long-standing gap of knowledge and highlighting its potential role in a tRNA modification circuit crucial for translation regulation and stress response.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Han Liao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Katherine Barondeau
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Xinyi Han
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hunter McConie
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Amirtha Shekar
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dimitri Pestov
- Department of Cell Biology and Neuroscience, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08028, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- Lead Contact
| |
Collapse
|
5
|
Herbert C, Valesyan S, Kist J, Limbach PA. Analysis of RNA and Its Modifications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:47-68. [PMID: 38594935 PMCID: PMC11605427 DOI: 10.1146/annurev-anchem-061622-125954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Ribonucleic acids (RNAs) are key biomolecules responsible for the transmission of genetic information, the synthesis of proteins, and modulation of many biochemical processes. They are also often the key components of viruses. Synthetic RNAs or oligoribonucleotides are becoming more widely used as therapeutics. In many cases, RNAs will be chemically modified, either naturally via enzymatic systems within a cell or intentionally during their synthesis. Analytical methods to detect, sequence, identify, and quantify RNA and its modifications have demands that far exceed requirements found in the DNA realm. Two complementary platforms have demonstrated their value and utility for the characterization of RNA and its modifications: mass spectrometry and next-generation sequencing. This review highlights recent advances in both platforms, examines their relative strengths and weaknesses, and explores some alternative approaches that lie at the horizon.
Collapse
Affiliation(s)
- Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Satenik Valesyan
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Jennifer Kist
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA;
| |
Collapse
|
6
|
Čáp M, Palková Z. Non-Coding RNAs: Regulators of Stress, Ageing, and Developmental Decisions in Yeast? Cells 2024; 13:599. [PMID: 38607038 PMCID: PMC11012152 DOI: 10.3390/cells13070599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cells must change their properties in order to adapt to a constantly changing environment. Most of the cellular sensing and regulatory mechanisms described so far are based on proteins that serve as sensors, signal transducers, and effectors of signalling pathways, resulting in altered cell physiology. In recent years, however, remarkable examples of the critical role of non-coding RNAs in some of these regulatory pathways have been described in various organisms. In this review, we focus on all classes of non-coding RNAs that play regulatory roles during stress response, starvation, and ageing in different yeast species as well as in structured yeast populations. Such regulation can occur, for example, by modulating the amount and functional state of tRNAs, rRNAs, or snRNAs that are directly involved in the processes of translation and splicing. In addition, long non-coding RNAs and microRNA-like molecules are bona fide regulators of the expression of their target genes. Non-coding RNAs thus represent an additional level of cellular regulation that is gradually being uncovered.
Collapse
Affiliation(s)
- Michal Čáp
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| |
Collapse
|
7
|
Yared MJ, Marcelot A, Barraud P. Beyond the Anticodon: tRNA Core Modifications and Their Impact on Structure, Translation and Stress Adaptation. Genes (Basel) 2024; 15:374. [PMID: 38540433 PMCID: PMC10969862 DOI: 10.3390/genes15030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/14/2024] Open
Abstract
Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional chemical modifications. Approximately 100 different modifications have been identified in tRNAs, and each tRNA typically contains 5-15 modifications that are incorporated at specific sites along the tRNA sequence. These modifications may be classified into two groups according to their position in the three-dimensional tRNA structure, i.e., modifications in the tRNA core and modifications in the anticodon-loop (ACL) region. Since many modified nucleotides in the tRNA core are involved in the formation of tertiary interactions implicated in tRNA folding, these modifications are key to tRNA stability and resistance to RNA decay pathways. In comparison to the extensively studied ACL modifications, tRNA core modifications have generally received less attention, although they have been shown to play important roles beyond tRNA stability. Here, we review and place in perspective selected data on tRNA core modifications. We present their impact on tRNA structure and stability and report how these changes manifest themselves at the functional level in translation, fitness and stress adaptation.
Collapse
Affiliation(s)
| | | | - Pierre Barraud
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France; (M.-J.Y.); (A.M.)
| |
Collapse
|
8
|
Jones JD, Simcox KM, Kennedy RT, Koutmou KS. Direct sequencing of total Saccharomyces cerevisiae tRNAs by LC-MS/MS. RNA (NEW YORK, N.Y.) 2023; 29:1201-1214. [PMID: 37169396 PMCID: PMC10351886 DOI: 10.1261/rna.079656.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023]
Abstract
Among RNAs, transfer RNAs (tRNAs) contain the widest variety of abundant posttranscriptional chemical modifications. These modifications are crucial for tRNAs to participate in protein synthesis, promoting proper tRNA structure and aminoacylation, facilitating anticodon:codon recognition, and ensuring the reading frame maintenance of the ribosome. While tRNA modifications were long thought to be stoichiometric, it is becoming increasingly apparent that these modifications can change dynamically in response to the cellular environment. The ability to broadly characterize the fluctuating tRNA modification landscape will be essential for establishing the molecular level contributions of individual sites of tRNA modification. The locations of modifications within individual tRNA sequences can be mapped using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In this approach, a single tRNA species is purified, treated with ribonucleases, and the resulting single-stranded RNA products are subject to LC-MS/MS analysis. The application of LC-MS/MS to study tRNAs is limited by the necessity of analyzing one tRNA at a time, because the digestion of total tRNA mixtures by commercially available ribonucleases produces many short digestion products unable to be uniquely mapped back to a single site within a tRNA. We overcame these limitations by taking advantage of the highly structured nature of tRNAs to prevent the full digestion by single-stranded RNA-specific ribonucleases. Folding total tRNA prior to digestion allowed us to sequence Saccharomyces cerevisiae tRNAs with up to 97% sequence coverage for individual tRNA species by LC-MS/MS. This method presents a robust avenue for directly detecting the distribution of modifications in total tRNAs.
Collapse
Affiliation(s)
- Joshua D Jones
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kaley M Simcox
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Petrov DP, Kaiser S, Kaiser S, Jung K. Opportunities and Challenges to Profile mRNA Modifications in Escherichia coli. Chembiochem 2022; 23:e202200270. [PMID: 35822398 PMCID: PMC9542048 DOI: 10.1002/cbic.202200270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Indexed: 11/23/2022]
Abstract
mRNA methylation is an important regulator of many physiological processes in eukaryotes but has not been studied in depth in prokaryotes. Working with bacterial mRNA is challenging because it lacks a poly(A)-tail. However, methods for detecting RNA modifications, both sequencing and mass spectrometry, rely on efficient preparation of mRNA. Here, we compared size-dependent separation by electrophoresis and rRNA depletion for enrichment of Escherichia coli mRNA. The purification success was monitored by qRT-PCR and RNA sequencing. Neither method allowed complete removal of rRNA. Nevertheless, we were able to quantitatively analyze several modified nucleosides in the different RNA types. We found evidence for stress dependent RNA modification reprofiling in rRNA, but also several modified nucleosides in the mRNA enriched fractions showed significant changes.
Collapse
Affiliation(s)
| | - Steffen Kaiser
- Department of ChemistryLudwig-Maximilians-University MunichMunichGermany
- Department of PharmacyGoethe-University FrankfurtFrankfurtGermany
| | - Stefanie Kaiser
- Department of ChemistryLudwig-Maximilians-University MunichMunichGermany
- Department of PharmacyGoethe-University FrankfurtFrankfurtGermany
| | - Kirsten Jung
- Department of Biology I, MicrobiologyLudwig-Maximilians-University MunichMartinsriedGermany
| |
Collapse
|