1
|
Cieleń G, Sell-Kubiak E. Importance and variability of the paternal component in sow reproductive traits. J Appl Genet 2024; 65:853-866. [PMID: 39422876 PMCID: PMC11561000 DOI: 10.1007/s13353-024-00910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Reproductive traits are an integral part of the goals of the breeding programs that contribute to the economic success of production. Reproductive phenotypes such as litter size, number of piglets born alive, or litter weight at birth are mainly attributed to females. Thus, the maternal components can be found by default in quantitative genetics' animal models. Still, paternal contribution to variance components should not be discarded. In this review, we indicate the importance of paternal effects in pig breeding by describing both the biology and genetics of boars' traits, the use of (non-)genetic service sire effects in quantitative genetic models for traits measured on females, and genes involved in male reproduction. We start by describing the important biological traits of boars that have the most important effect on their reproductive abilities, i.e., sexual maturity, sperm quality, and testes parameters. Then we move to the possible environmental effects that could affect those traits of boars (e.g., feed, temperature). The main part of the review in detail describes the genetics of boars' reproductive traits (i.e., heritability) and their direct effect on reproductive traits of females (i.e., genetic correlations). We then move to the use of both genetic and non-genetic service sire effects in quantitative models estimated as their percentage in the total variance of traits, which vary depending on the breed from 1 to 4.5% or from 1 to 2%, respectively. Finally, we focus on the description of candidate genes and confirmed mutations affecting male reproduction success: IGF2, Tgm8, ESR1, ZSWIM7, and ELMO1. In conclusion, the observed variance of paternal effects in female reproduction traits might come from various attributes of boars including biological and genetic aspects. Those attributes of boars should not be neglected as they contribute to the success of female reproductive traits.
Collapse
Affiliation(s)
- G Cieleń
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland
| | - E Sell-Kubiak
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| |
Collapse
|
2
|
Khan MZ, Chen W, Naz S, Liu X, Liang H, Chen Y, Kou X, Liu Y, Ashraf I, Han Y, Peng Y, Wang C, Zahoor M. Determinant genetic markers of semen quality in livestock. Front Endocrinol (Lausanne) 2024; 15:1456305. [PMID: 39429738 PMCID: PMC11489916 DOI: 10.3389/fendo.2024.1456305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024] Open
Abstract
The reproductive efficiency of livestock is crucial for agricultural productivity and economic sustainability. One critical factor in successful fertilization and the viability of offspring is the quality of semen. Poor semen quality, especially in frozen-thawed semen used in artificial insemination (AI) have been shown to influence conception outcomes, resulting a negative impact on livestock production. Recent advancements in genetic research have identified specific markers linked to semen quality traits in various livestock species, such as cattle, sheep, goats, pigs, buffalo, and equines. These genetic markers are essential in screening males for breeding suitability, which in turn enhances selective breeding programs. Understanding these markers is crucial for improving reproductive performance and increasing productivity in livestock populations. This review offers a comprehensive overview of the genetic markers associated with semen quality in key livestock. It explores the underlying genetic mechanisms and their practical implications in animal breeding and management. The review underscores the importance of integrating genetic insights into breeding strategies to optimize reproductive efficiency and ensure the sustainable development of livestock industries.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Saima Naz
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yihong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Iqra Ashraf
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Ying Han
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yongdong Peng
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Dementieva NV, Dysin AP, Shcherbakov YS, Nikitkina EV, Musidray AA, Petrova AV, Mitrofanova OV, Plemyashov KV, Azovtseva AI, Griffin DK, Romanov MN. Risk of Sperm Disorders and Impaired Fertility in Frozen-Thawed Bull Semen: A Genome-Wide Association Study. Animals (Basel) 2024; 14:251. [PMID: 38254422 PMCID: PMC10812825 DOI: 10.3390/ani14020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Cryopreservation is a widely used method of semen conservation in animal breeding programs. This process, however, can have a detrimental effect on sperm quality, especially in terms of its morphology. The resultant sperm disorders raise the risk of reduced sperm fertilizing ability, which poses a serious threat to the long-term efficacy of livestock reproduction and breeding. Understanding the genetic factors underlying these effects is critical for maintaining sperm quality during cryopreservation, and for animal fertility in general. In this regard, we performed a genome-wide association study to identify genomic regions associated with various cryopreservation sperm abnormalities in Holstein cattle, using single nucleotide polymorphism (SNP) markers via a high-density genotyping assay. Our analysis revealed a significant association of specific SNPs and candidate genes with absence of acrosomes, damaged cell necks and tails, as well as wrinkled acrosomes and decreased motility of cryopreserved sperm. As a result, we identified candidate genes such as POU6F2, LPCAT4, DPYD, SLC39A12 and CACNB2, as well as microRNAs (bta-mir-137 and bta-mir-2420) that may play a critical role in sperm morphology and disorders. These findings provide crucial information on the molecular mechanisms underlying acrosome integrity, motility, head abnormalities and damaged cell necks and tails of sperm after cryopreservation. Further studies with larger sample sizes, genome-wide coverage and functional validation are needed to explore causal variants in more detail, thereby elucidating the mechanisms mediating these effects. Overall, our results contribute to the understanding of genetic architecture in cryopreserved semen quality and disorders in bulls, laying the foundation for improved animal reproduction and breeding.
Collapse
Affiliation(s)
- Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Elena V. Nikitkina
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Artem A. Musidray
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Anna V. Petrova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Olga V. Mitrofanova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Kirill V. Plemyashov
- Federal State Budgetary Educational Institution of Higher Education “St. Petersburg State University of Veterinary Medicine”, 196084 St. Petersburg, Russia;
| | - Anastasiia I. Azovtseva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | | | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Moscow Oblast, Russia
| |
Collapse
|
4
|
Nikitkina EV, Dementieva NV, Shcherbakov YS, Atroshchenko MM, Kudinov AA, Samoylov OI, Pozovnikova MV, Dysin AP, Krutikova AA, Musidray AA, Mitrofanova OV, Plemyashov KV, Griffin DK, Romanov MN. Genome-wide association study for frozen-thawed sperm motility in stallions across various horse breeds. Anim Biosci 2022; 35:1827-1838. [PMID: 35240017 PMCID: PMC9659452 DOI: 10.5713/ab.21.0504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The semen quality of stallions including sperm motility is an important target of selection as it has a high level of individual variability. However, effects of the molecular architecture of the genome on the mechanisms of sperm formation and their preservation after thawing have been poorly investigated. Here, we conducted a genome-wide association study (GWAS) for the sperm motility of cryopreserved semen in stallions of various breeds. METHODS Semen samples were collected from the stallions of 23 horse breeds. The following semen characteristics were examined: progressive motility (PM), progressive motility after freezing (FPM), and the difference between PM and FPM. The respective DNA samples from these stallions were genotyped using Axiom Equine Genotyping Array. RESULTS We performed a GWAS search for single nucleotide polymorphism (SNP) markers and potential genes related to motility properties of frozen-thawed semen in the stallions of various breeds. As a result of the GWAS analysis, two SNP markers, rs1141327473 and rs1149048772, were identified that were associated with preservation of the frozen-thawed stallion sperm motility, the relevant putative candidate genes being NME/NM23 family member 8 (NME8), olfactory receptor family 2 subfamily AP member 1 (OR2AP1), and olfactory receptor family 6 subfamily C member 4 (OR6C4). Potential implications of effects of these genes on sperm motility are herein discussed. CONCLUSION The GWAS results enabled us to localize novel SNPs and candidate genes for sperm motility in stallions. Implications of the study for horse breeding and genetics are a better understanding of genomic regions and candidate genes underlying stallion sperm quality, and improvement in horse reproduction and breeding techniques. The identified markers and genes for sperm cryotolerance and the respective genomic regions are promising candidates for further studying the biological processes in the formation and function of the stallion reproductive system.
Collapse
Affiliation(s)
- Elena V. Nikitkina
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Natalia V. Dementieva
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Yuri S. Shcherbakov
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Mikhail M. Atroshchenko
- All-Russian Research Institute for Horse Breeding, Rybnovsky District, Ryazan Oblast, 391105,
Russia
| | - Andrei A. Kudinov
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Oleg I. Samoylov
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Marina V. Pozovnikova
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Artem P. Dysin
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Anna A. Krutikova
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Artem A. Musidray
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Olga V. Mitrofanova
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Kirill V. Plemyashov
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | | | | |
Collapse
|
5
|
Laseca N, Demyda-Peyrás S, Valera M, Ramón M, Escribano B, Perdomo-González DI, Molina A. A genome-wide association study of mare fertility in the Pura Raza Español horse. Animal 2022; 16:100476. [PMID: 35247706 DOI: 10.1016/j.animal.2022.100476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Despite the economic importance of fertility for the horse industry, few efforts have been made to achieve a better understanding of the genetic mechanisms underlying its control. This is probably due to the difficulty of obtaining reliable phenotypes and the complexity of modelling the environmental and management factors. This work is novel in that we propose to use reproductive efficiency (RE) as an indicator of mare fertility. To achieve this, we performed a genome-wide association study in the Pura Raza Español horse aimed at identifying genomic variants, regions, and candidate genes associated with fertility in mares. The dataset included 819 animals genotyped with the Affymetrix Axiom™ Equine 670 K single-nucleotide polymorphisms (SNPs) Genotyping Array and the deregressed breeding values for RE trait, obtained using a ssBLUP model, employed as pseudo-phenotypic data. Our results showed 28 SNPs potentially associated with RE, which explained 87.19% of the genetic variance and 6.61% of the phenotypic variance. Those results were further validated in BayesB, showing a correlation between observed and predicted RE of 0.57. In addition, 15 candidate genes (HTRA3, SPIRE1, APOE, ERCC1, FOXA3, NECTIN-2, KLC3, RSPH6A, PDPK1, MEIOB, PAQR4, NM3, PKD1, PRSS21, IFT140) previously related to fertility in mammals were associated with the markers and genomic regions significantly associated with RE. To our knowledge, this is the first genome-wide association study performed on mare fertility.
Collapse
Affiliation(s)
- N Laseca
- Departamento de Genética. Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, CN-IV km 396, 14071 Córdoba, España.
| | - S Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata 1900, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) La Plata, La Plata 1900, Argentina
| | - M Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica. Universidad de Sevilla, Ctra. Utrera, Km 1, Sevilla, Spain
| | - M Ramón
- Centro Regional de Selección y Reproducción Animal (CERSYRA), Av. del Vino, 10, 13300 Valdepeñas, Ciudad Real, Spain
| | - B Escribano
- Departamento de Fisiología, Universidad de Córdoba, Campus de Rabanales, CN-IV km 396, 14071 Córdoba, Spain
| | - D I Perdomo-González
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica. Universidad de Sevilla, Ctra. Utrera, Km 1, Sevilla, Spain
| | - A Molina
- Departamento de Genética. Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, CN-IV km 396, 14071 Córdoba, España
| |
Collapse
|