1
|
Reis Soares N, Costa ZP, Marques JPR, Garsmeur O, Sampaio Carneiro M, Monteiro Vitorello CB, D'Hont A, Vieira MLC. First investigation into the genetic control of meiosis in sugarcane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2094-2107. [PMID: 38523577 DOI: 10.1111/tpj.16731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024]
Abstract
The sugarcane (Saccharum spp.) genome is one of the most complex of all. Modern varieties are highly polyploid and aneuploid as a result of hybridization between Saccharum officinarum and S. spontaneum. Little research has been done on meiotic control in polyploid species, with the exception of the wheat Ph1 locus harboring the ZIP4 gene (TaZIP4-B2) which promotes pairing between homologous chromosomes while suppressing crossover between homeologs. In sugarcane, despite its interspecific origin, bivalent association is favored, and multivalents, if any, are resolved at the end of prophase I. Thus, our aim herein was to investigate the purported genetic control of meiosis in the parental species and in sugarcane itself. We investigated the ZIP4 gene and immunolocalized meiotic proteins, namely synaptonemal complex proteins Zyp1 and Asy1. The sugarcane ZIP4 gene is located on chromosome 2 and expressed more abundantly in flowers, a similar profile to that found for TaZIP4-B2. ZIP4 expression is higher in S. spontaneum a neoautopolyploid, with lower expression in S. officinarum, a stable octoploid species. The sugarcane Zip4 protein contains a TPR domain, essential for scaffolding. Its 3D structure was also predicted, and it was found to be very similar to that of TaZIP4-B2, reflecting their functional relatedness. Immunolocalization of the Asy1 and Zyp1 proteins revealed that S. officinarum completes synapsis. However, in S. spontaneum and SP80-3280 (a modern variety), no nuclei with complete synapsis were observed. Importantly, our results have implications for sugarcane cytogenetics, genetic mapping, and genomics.
Collapse
Affiliation(s)
- Nina Reis Soares
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900, Piracicaba, São Paulo, Brazil
| | - Zirlane Portugal Costa
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900, Piracicaba, São Paulo, Brazil
| | - João Paulo Rodrigues Marques
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, SP, 13635-900, Pirassununga, São Paulo, Brazil
| | - Olivier Garsmeur
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34060, Montpellier, France
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, 13604-900, Araras, São Paulo, Brazil
| | - Cláudia Barros Monteiro Vitorello
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900, Piracicaba, São Paulo, Brazil
| | - Angélique D'Hont
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34060, Montpellier, France
| | - Maria Lucia Carneiro Vieira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900, Piracicaba, São Paulo, Brazil
| |
Collapse
|
2
|
Kalfusová R, Herklotz V, Kumke K, Houben A, Kovařík A, Ritz CM, Lunerová J. Epigenetic histone H3 phosphorylation marks discriminate between univalent- and bivalent-forming chromosomes during canina asymmetrical meiosis. ANNALS OF BOTANY 2024; 133:435-446. [PMID: 38127060 PMCID: PMC11006542 DOI: 10.1093/aob/mcad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND AND AIMS Dogroses (Rosa sect. Caninae) are mostly pentaploid, bearing 2n = 5x = 35 chromosomes in somatic cells. They evolved a unique form of asymmetrical meiosis characterized by two types of chromosomes: (1) chromosomes forming bivalents and distributed in the normal sexual way; and (2) chromosomes occurring as univalents and transferred by a female gamete only. In the mature pollen of pentaploid species, seven bivalent-derived chromosomes are transmitted to offspring, and 21 unpaired univalent chromosomes are eliminated during microsporogenesis. To discriminate between bivalent- and univalent-forming chromosomes, we studied histone H3 phosphorylation patterns regulating meiotic chromosome condensation and segregation. METHODS We analysed histone modification patterns during male canina meiosis in two representative dogrose species, 5x Rosa canina and 5x Rosa rubiginosa, by immunohistochemical and molecular cytogenetics approaches. Immunostaining of meiotic cells included α-tubulin, histone H3 phosphorylation (H3S10p, H3S28p and H3T3p) and methylation (H3K4me3 and H3K27me3) marks. In addition, fluorescent in situ hybridization was carried out with an 18S rDNA probe. KEY RESULTS In the first meiotic division, univalent chromosomes underwent equational division into chromatids, while homologues in bivalents were segregated as regular dyads. In diakinesis, bivalent chromosomes displayed strong H3 phosphorylation signals in proximal regions, spreading to the rest of the chromosome. In contrast, in univalents, the H3 phosphorylation signals were weaker, occurring mostly outside proximal regions largely overlapping with the H3K4me3 signals. Reduced phosphorylation was associated with relative under-condensation of the univalent chromosomes, particularly at early diakinesis. CONCLUSIONS We hypothesize that the absence of pairing and/or recombination in univalent chromosomes negatively affects the histone H3 phosphorylation of their chromatin and perhaps the loading of meiotic-specific cohesins. This apparently destabilizes cohesion of sister chromatids, leading to their premature split in the first meiotic division.
Collapse
Affiliation(s)
- Radka Kalfusová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Veit Herklotz
- Senckenberg Museum of Natural History, Senckenberg – Member of the Leibniz Association, Am Museum 1, 02826 Görlitz, Germany
| | - Katrin Kumke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Aleš Kovařík
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Christiane M Ritz
- Senckenberg Museum of Natural History, Senckenberg – Member of the Leibniz Association, Am Museum 1, 02826 Görlitz, Germany
- Chair of Biodiversity of Higher Plants, Technical University Dresden, D-01069, Dresden, Germany
| | - Jana Lunerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| |
Collapse
|
3
|
Chéron F, Petiot V, Lambing C, White C, Serra H. Incorrect recombination partner associations contribute to meiotic instability of neo-allopolyploid Arabidopsis suecica. THE NEW PHYTOLOGIST 2024; 241:2025-2038. [PMID: 38158491 DOI: 10.1111/nph.19487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Combining two or more related homoeologous genomes in a single nucleus, newly formed allopolyploids must rapidly adapt meiosis to restore balanced chromosome segregation, production of euploid gametes and fertility. The poor fertility of such neo-allopolyploids thus strongly selects for the limitation or avoidance of genetic crossover formation between homoeologous chromosomes. In this study, we have reproduced the interspecific hybridization between Arabidopsis thaliana and Arabidopsis arenosa leading to the allotetraploid Arabidopsis suecica and have characterized the first allopolyploid meioses. First-generation neo-allopolyploid siblings vary considerably in fertility, meiotic behavior and levels of homoeologous recombination. We show that centromere dynamics at early meiosis is altered in synthetic neo-allopolyploids compared with evolved A. suecica, with a significant increase in homoeologous centromere interactions at zygotene. At metaphase I, the presence of multivalents involving homoeologous chromosomes confirms that homoeologous recombination occurs in the first-generation synthetic allopolyploid plants and this is associated with a significant reduction in homologous recombination, compared to evolved A. suecica. Together, these data strongly suggest that the fidelity of recombination partner choice, likely during the DNA invasion step, is strongly impaired during the first meiosis of neo-allopolyploids and requires subsequent adaptation.
Collapse
Affiliation(s)
- Floriane Chéron
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Valentine Petiot
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | | | - Charles White
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Heïdi Serra
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
4
|
González GE, Poggio L. Polyploid speciation in Zea (Poaceae): cytogenetic insights. PLANTA 2024; 259:67. [PMID: 38332313 DOI: 10.1007/s00425-024-04345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024]
Abstract
MAIN CONCLUSION The analysis of meiotic pairing affinities and genomic formulae in species and hybrids of Zea allowed us to speculate an evolutionary model to recreate the ancient polyploidization of maize and allied species. The meiotic pairing affinities and the genomic formulae analysis in Zea species and hybrids obtained in new and previous crosses, together with the molecular data known in the genus, allowed us to speculate an evolutionary model to attempt to recreate the ancient polyploidization process of Zea species. We propose that x = 5 semispecies are the ancestors of all modern species of the genus. The complex evolutionary process that originated the different taxa could be included hybridization between sympatric diploid ancestral semispecies (2n = 10) and recurrent duplication of the hybrid chromosome number, resulting in distinct auto- and allopolyploids. After the merger and doubling of independent genomes would have undergone cytological and genetical diploidization, implying revolutionary changes in genome organization and genic balance processes. Based on the meiotic behaviour of the 2n = 30 hybrids, that showed homoeology between the A subgenomes of all parental species, we propose that this subgenome A would be pivotal in all the species and would have conserved the rDNA sequences and the pairing regulator locus (PrZ). In the hypothetical model postulated here, the ancestral semispecies with the pivotal subgenome A would have had a wide geographic distribution, co-occurring and hybridizing with the semispecies harbouring B subgenomes, thus enabling sympatric speciation.
Collapse
Affiliation(s)
- Graciela Esther González
- Instituto de Ecología, Genética y Evolución (IEGEBA, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Lidia Poggio
- Instituto de Ecología, Genética y Evolución (IEGEBA, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
da Costa Lima Moraes A, Mollinari M, Ferreira RCU, Aono A, de Castro Lara LA, Pessoa-Filho M, Barrios SCL, Garcia AAF, do Valle CB, de Souza AP, Vigna BBZ. Advances in genomic characterization of Urochloa humidicola: exploring polyploid inheritance and apomixis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:238. [PMID: 37919432 DOI: 10.1007/s00122-023-04485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
KEY MESSAGE We present the highest-density genetic map for the hexaploid Urochloa humidicola. SNP markers expose genetic organization, reproduction, and species origin, aiding polyploid and tropical forage research. Tropical forage grasses are an important food source for animal feeding, with Urochloa humidicola, also known as Koronivia grass, being one of the main pasture grasses for poorly drained soils in the tropics. However, genetic and genomic resources for this species are lacking due to its genomic complexity, including high heterozygosity, evidence of segmental allopolyploidy, and reproduction by apomixis. These complexities hinder the application of marker-assisted selection (MAS) in breeding programs. Here, we developed the highest-density linkage map currently available for the hexaploid tropical forage grass U. humidicola. This map was constructed using a biparental F1 population generated from a cross between the female parent H031 (CIAT 26146), the only known sexual genotype for the species, and the apomictic male parent H016 (BRS cv. Tupi). The linkage analysis included 4873 single nucleotide polymorphism (SNP) markers with allele dosage information. It allowed mapping of the ASGR locus and apospory phenotype to linkage group 3, in a region syntenic with chromosome 3 of Urochloa ruziziensis and chromosome 1 of Setaria italica. We also identified hexaploid haplotypes for all individuals, assessed the meiotic configuration, and estimated the level of preferential pairing in parents during the meiotic process, which revealed the autopolyploid origin of sexual H031 in contrast to apomictic H016, which presented allopolyploid behavior in preferential pairing analysis. These results provide new information regarding the genetic organization, mode of reproduction, and allopolyploid origin of U. humidicola, potential SNPs markers associated with apomixis for MAS and resources for research on polyploids and tropical forage grasses.
Collapse
Affiliation(s)
- Aline da Costa Lima Moraes
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo Mollinari
- Department of Horticultural Science, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | | | - Alexandre Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | | | | | | - Anete Pereira de Souza
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | |
Collapse
|
6
|
Deb SK, Edger PP, Pires JC, McKain MR. Patterns, mechanisms, and consequences of homoeologous exchange in allopolyploid angiosperms: a genomic and epigenomic perspective. THE NEW PHYTOLOGIST 2023; 238:2284-2304. [PMID: 37010081 DOI: 10.1111/nph.18927] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Allopolyploids result from hybridization between different evolutionary lineages coupled with genome doubling. Homoeologous chromosomes (chromosomes with common shared ancestry) may undergo recombination immediately after allopolyploid formation and continue over successive generations. The outcome of this meiotic pairing behavior is dynamic and complex. Homoeologous exchanges (HEs) may lead to the formation of unbalanced gametes, reduced fertility, and selective disadvantage. By contrast, HEs could act as sources of novel evolutionary substrates, shifting the relative dosage of parental gene copies, generating novel phenotypic diversity, and helping the establishment of neo-allopolyploids. However, HE patterns vary among lineages, across generations, and even within individual genomes and chromosomes. The causes and consequences of this variation are not fully understood, though interest in this evolutionary phenomenon has increased in the last decade. Recent technological advances show promise in uncovering the mechanistic basis of HEs. Here, we describe recent observations of the common patterns among allopolyploid angiosperm lineages, underlying genomic and epigenomic features, and consequences of HEs. We identify critical research gaps and discuss future directions with far-reaching implications in understanding allopolyploid evolution and applying them to the development of important phenotypic traits of polyploid crops.
Collapse
Affiliation(s)
- Sontosh K Deb
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48823, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
7
|
Goeckeritz CZ, Rhoades KE, Childs KL, Iezzoni AF, VanBuren R, Hollender CA. Genome of tetraploid sour cherry (Prunus cerasus L.) 'Montmorency' identifies three distinct ancestral Prunus genomes. HORTICULTURE RESEARCH 2023; 10:uhad097. [PMID: 37426879 PMCID: PMC10323630 DOI: 10.1093/hr/uhad097] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 07/11/2023]
Abstract
Sour cherry (Prunus cerasus L.) is a valuable fruit crop in the Rosaceae family and a hybrid between progenitors closely related to extant Prunus fruticosa (ground cherry) and Prunus avium (sweet cherry). Here we report a chromosome-scale genome assembly for sour cherry cultivar Montmorency, the predominant cultivar grown in the USA. We also generated a draft assembly of P. fruticosa to use alongside a published P. avium sequence for syntelog-based subgenome assignments for 'Montmorency' and provide compelling evidence P. fruticosa is also an allotetraploid. Using hierarchal k-mer clustering and phylogenomics, we show 'Montmorency' is trigenomic, containing two distinct subgenomes inherited from a P. fruticosa-like ancestor (A and A') and two copies of the same subgenome inherited from a P. avium-like ancestor (BB). The genome composition of 'Montmorency' is AA'BB and little-to-no recombination has occurred between progenitor subgenomes (A/A' and B). In Prunus, two known classes of genes are important to breeding strategies: the self-incompatibility loci (S-alleles), which determine compatible crosses, successful fertilization, and fruit set, and the Dormancy Associated MADS-box genes (DAMs), which strongly affect dormancy transitions and flowering time. The S-alleles and DAMs in 'Montmorency' and P. fruticosa were manually annotated and support subgenome assignments. Lastly, the hybridization event 'Montmorency' is descended from was estimated to have occurred less than 1.61 million years ago, making sour cherry a relatively recent allotetraploid. The 'Montmorency' genome highlights the evolutionary complexity of the genus Prunus and will inform future breeding strategies for sour cherry, comparative genomics in the Rosaceae, and questions regarding neopolyploidy.
Collapse
Affiliation(s)
- Charity Z Goeckeritz
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Kathleen E Rhoades
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Amy F Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Courtney A Hollender
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Premachandra T, Cauret CMS, Conradie W, Measey J, Evans BJ. Population genomics and subgenome evolution of the allotetraploid frog Xenopus laevis in southern Africa. G3 (BETHESDA, MD.) 2022; 13:6916838. [PMID: 36524354 PMCID: PMC9911082 DOI: 10.1093/g3journal/jkac325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Allotetraploid genomes have two distinct genomic components called subgenomes that are derived from separate diploid ancestral species. Many genomic characteristics such as gene function, expression, recombination, and transposable element mobility may differ significantly between subgenomes. To explore the possibility that subgenome population structure and gene flow may differ as well, we examined genetic variation in an allotetraploid frog-the African clawed frog (Xenopus laevis)-over the dynamic and varied habitat of its native range in southern Africa. Using reduced representation genome sequences from 91 samples from 12 localities, we found no strong evidence that population structure and gene flow differed substantially by subgenome. We then compared patterns of population structure in the nuclear genome to the mitochondrial genome using Sanger sequences from 455 samples from 183 localities. Our results provide further resolution to the geographic distribution of mitochondrial and nuclear diversity in this species and illustrate that population structure in both genomes corresponds roughly with variation in seasonal rainfall and with the topography of southern Africa.
Collapse
Affiliation(s)
- Tharindu Premachandra
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, ON L8S4K1, Canada
| | - Caroline M S Cauret
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, ON L8S4K1, Canada,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Werner Conradie
- Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood, Gqeberha 6013, South Africa,Department of Conservation Management, Natural Resource Science and Management Cluster, Faculty of Science, Nelson Mandela University, George Campus, George 6019, South Africa
| | - John Measey
- Corresponding author: Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| | | |
Collapse
|
9
|
Samatadze TE, Yurkevich OY, Khazieva FM, Basalaeva IV, Konyaeva EA, Burova AE, Zoshchuk SA, Morozov AI, Amosova AV, Muravenko OV. Agro-Morphological and Cytogenetic Characterization of Colchicine-Induced Tetraploid Plants of Polemonium caeruleum L. (Polemoniaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192585. [PMID: 36235449 PMCID: PMC9570621 DOI: 10.3390/plants11192585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 06/12/2023]
Abstract
Polemonium caeruleum L. (Polemoniaceae) is a valuable medicinal herb with a wide spectrum of biological activities. Under natural conditions, the productivity of this species is rather low. In this study, colchicine-induced tetraploid plants (2n = 4x = 36) of P. caeruleum were obtained, and for the first time, their morphological and cytogenetic characterization was performed. In the tetraploid plants, raw material productivity and also the content of triterpene saponins were significantly higher than in the control diploids. The analysis of chromosome behavior at meiosis and FISH chromosome mapping of 45S and 5S rDNA generally demonstrated stability of both genomes in the tetraploid plants. Based on chromosome morphology and distribution patterns of the studied molecular cytogenetic markers, all chromosome pairs in karyotypes were identified, and chromosome karyograms and idiograms of P. caeruleum were constructed. The revealed specific microdiagnostic characteristics of P. caeruleum (strongly sinuous cells and anomocytic stomata of the leaf epidermis, and also glandular hairs along the veins) could be useful for raw material identification. In the obtained tetraploids, the predominance of large stomata on the lower leaf epidermis was determined. The studied tetraploids can be used in various breeding programs to obtain high-quality pharmaceutical raw materials of P. caeruleum.
Collapse
Affiliation(s)
- Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia
| | - Firdaus M. Khazieva
- All-Russian Institute of Medicinal and Aromatic Plants, 7 Green St., Moscow 117216, Russia
| | - Irina V. Basalaeva
- All-Russian Institute of Medicinal and Aromatic Plants, 7 Green St., Moscow 117216, Russia
| | - Elena A. Konyaeva
- All-Russian Institute of Medicinal and Aromatic Plants, 7 Green St., Moscow 117216, Russia
| | - Alla E. Burova
- All-Russian Institute of Medicinal and Aromatic Plants, 7 Green St., Moscow 117216, Russia
| | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia
| | - Alexander I. Morozov
- All-Russian Institute of Medicinal and Aromatic Plants, 7 Green St., Moscow 117216, Russia
| | - Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia
| |
Collapse
|
10
|
Windham MD, Huiet L, Metzgar JS, Ranker TA, Yatskievych G, Haufler CH, Pryer KM. Once more unto the breach, dear friends: Resolving the origins and relationships of the Pellaea wrightiana hybrid complex. AMERICAN JOURNAL OF BOTANY 2022; 109:821-850. [PMID: 35568966 DOI: 10.1002/ajb2.1850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
PREMISE The taxonomic status of Wright's cliff brake fern, Pellaea wrightiana, has been in dispute ever since it was first described by Hooker in 1858. Previously published evidence suggested that this "taxon" may represent a polyploid complex rather than a single discrete species, a hypothesis tested here using a multifaceted analytical approach. METHODS Data derived from cytogenetics, spore analyses, leaf morphometrics, enzyme electrophoresis, and phylogenetic analyses of plastid and nuclear DNA sequences are used to elucidate the origin, relationships, and taxonomic circumscription of P. wrightiana. RESULTS Plants traditionally assigned to this taxon represent three distinct polyploids. The most widespread, P. wrightiana, is a fertile allotetraploid that arose through hybridization between two divergent diploid species, P. truncata and P. ternifolia. Sterile triploids commonly identified as P. wrightiana, were found to be backcross hybrids between this fertile tetraploid and diploid P. truncata. Relatively common across Arizona and New Mexico, they are here assigned to P. ×wagneri hyb. nov. In addition, occasional sterile tetraploid plants assigned to P. wrightiana are shown here to be hybrids between the fertile allotetraploid and the tetraploid P. ternifolia subsp. arizonica. These tetraploid hybrids originated independently in two regions of parental sympatry (southern Arizona and west Texas) and are here assigned to P. ×gooddingii hyb. nov. CONCLUSIONS Weaving together data from a diversity of taxonomic approaches, we show that plants identified as P. wrightiana represent three morphologically distinguishable polyploids that have arisen through repeated hybridization events involving the divergent sexual taxa P. ternifolia and P. truncata.
Collapse
Affiliation(s)
| | - Layne Huiet
- Department of Biology, Duke University, Durham, 27708, NC, USA
| | - Jordan S Metzgar
- Department of Biological Sciences, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Tom A Ranker
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, 96822, HI, USA
| | - George Yatskievych
- Billie L. Turner Plant Resources Center, University of Texas, Austin, 78712, TX, USA
| | - Christopher H Haufler
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, 66045, KS, USA
| | | |
Collapse
|
11
|
All Ways Lead to Rome—Meiotic Stabilization Can Take Many Routes in Nascent Polyploid Plants. Genes (Basel) 2022; 13:genes13010147. [PMID: 35052487 PMCID: PMC8775444 DOI: 10.3390/genes13010147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Newly formed polyploids often show extensive meiotic defects, resulting in aneuploid gametes, and thus reduced fertility. However, while many neopolyploids are meiotically unstable, polyploid lineages that survive in nature are generally stable and fertile; thus, those lineages that survive are those that are able to overcome these challenges. Several genes that promote polyploid stabilization are now known in plants, allowing speculation on the evolutionary origin of these meiotic adjustments. Here, I discuss results that show that meiotic stability can be achieved through the differentiation of certain alleles of certain genes between ploidies. These alleles, at least sometimes, seem to arise by novel mutation, while standing variation in either ancestral diploids or related polyploids, from which alleles can introgress, may also contribute. Growing evidence also suggests that the coevolution of multiple interacting genes has contributed to polyploid stabilization, and in allopolyploids, the return of duplicated genes to single copies (genome fractionation) may also play a role in meiotic stabilization. There is also some evidence that epigenetic regulation may be important, which can help explain why some polyploid lineages can partly stabilize quite rapidly.
Collapse
|