1
|
Kim MS, Kim JS, Song SI, Jun KM, Shim SH, Jeon JS, Lee TH, Lee SB, Lee GS, Kim YK. A combination of upstream alleles involved in rice heading hastens natural long-day responses. Genes Genomics 2025; 47:245-261. [PMID: 39567417 PMCID: PMC11757646 DOI: 10.1007/s13258-024-01597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND The female parental line Jinbuol (JBO, early heading) and two recombinant isogenic lines, JSRIL1 and JSRIL2, have been shown to flower 44, 34 and 16 days earlier, respectively, than the male parental line Samgwang (SG, late heading) in paddy fields. OBJECTIVE To explore how photoperiodicity-related genes are involved in differential heading among these lines. METHODS Deep sequencing was conducted for these lines, photoperiodicity-related genes (71) were categorized, and qRT-PCR was performed for some key genes. RESULTS Deep sequencing revealed a nearly even contribution of parental groups, with 48.5% and 45% of the chromosomes in JSRIL1 and JSRIL2, respectively, inherited from the female parent JBO; however, Chr6 contained the most biased parental contribution, with 99.4% inherited from the female parent. The variation in single-nucleotide polymorphisms (SNPs) among many known flower-inducing genes, including rice GIGANTEA (OsGI); grain number, plant height and heading date 7 (Ghd7); and EARLY HEADING DATE 1 (Ehd1), was minimal. In the JSRILs, HEADING DATE 1 (Hd1) and VERNALIZATION INSENSITIVE 3-LIKE 1 (OsVIL2) originated from JBO, whereas FLAVIN-BINDING, KELCH REPEAT, F BOX 1 (OsFKF1) originated from SG. Interestingly, HEN1 suppressor 1 (OsHESO1) originated from SG in JSRIL1 and JBO in JSRIL2. RNA sequencing and qRT‒PCR analyses of plants at the floral meristem stage revealed that transcriptional regulation through chromosomal restructuring and posttranscriptional regulation might control minute gene regulation, resulting in delayed heading in JSRILs. CONCLUSION Our gene expression and SNP analyses of elite recombinant isogenic lines could be helpful in understanding how photoperiodicity-related genes in rice are modulated.
Collapse
Affiliation(s)
- Myung-Shin Kim
- Department of Biosciences and Bioinformatics, Myongji University, 116 Myongji‑ro, Cheoin‑gu, Yongin, Gyeonggi‑do, 17058, Republic of Korea
| | - Joung Sug Kim
- Department of Biosciences and Bioinformatics, Myongji University, 116 Myongji‑ro, Cheoin‑gu, Yongin, Gyeonggi‑do, 17058, Republic of Korea
| | - Sang Ik Song
- Department of Biosciences and Bioinformatics, Myongji University, 116 Myongji‑ro, Cheoin‑gu, Yongin, Gyeonggi‑do, 17058, Republic of Korea
| | - Kyong Mi Jun
- Genomics Genetics Institute, GreenGene BioTech Inc., 16‑4 Dongbaekjungang‑ro 16beon‑gil, Giheung‑gu, Yongin, Gyeonggi‑do, 17015, Republic of Korea
| | - Su-Hyeon Shim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Tae-Ho Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, 54875, Republic of Korea
| | - Sang-Bok Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, 54875, Republic of Korea
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, 54875, Republic of Korea
| | - Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, 116 Myongji‑ro, Cheoin‑gu, Yongin, Gyeonggi‑do, 17058, Republic of Korea.
| |
Collapse
|
2
|
Kim YK. Knockout of OsWOX13 moderately delays flowering in rice under natural long-day conditions. Biosci Biotechnol Biochem 2024; 88:1307-1315. [PMID: 39164217 DOI: 10.1093/bbb/zbae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Plants are sensitive to photoperiods and are also equipped with systems to adjust their flowering time in response to various changes in the environment and developmental hormones. In the present study, previously generated rice OsWOX13 overexpression and newly generated OsWOX13 knockout lines constructed via CRISPR/Cas9 technology flowered 10 days earlier and 4-6 days later than the wild type, respectively. Quantitative real-time polymerase chain reaction analyses revealed that OsWOX13 might be involved in drought escape responses through the b-ZIP TRANSCRIPTION FACTOR 23 signaling pathway during rice flowering via photoperiod signaling genes such as Grain number, plant height and heading date 7, Early heading date 1, RICE FLOWERING LOCUS T1, Heading date 3a, and MADS14. Future investigations of OsWOX13 may provide insight into how plants adjust their flowering under stress conditions and how OsWOX13 could be precisely controlled to achieve maximum productivity in rice breeding.
Collapse
Affiliation(s)
- Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Wu JJ, Deng QW, Qiu YY, Liu C, Lin CF, Ru YL, Sun Y, Lai J, Liu LX, Shen XX, Pan R, Zhao YP. Post-transfer adaptation of HGT-acquired genes and contribution to guanine metabolic diversification in land plants. THE NEW PHYTOLOGIST 2024; 244:694-707. [PMID: 39166427 DOI: 10.1111/nph.20040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post-transfer adaptation of HGT-acquired genes in land plants remain elusive. We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants. HGT-acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT-acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post-transfer adaptation of HGT in land plants. Functional validation of bacteria-derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.
Collapse
Affiliation(s)
- Jun-Jie Wu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Wen Deng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Yi-Yang Qiu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Center for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Feng Lin
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Lu Ru
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yue Sun
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Lai
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu-Xian Liu
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xing-Xing Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Center for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, 310058, China
| | - Ronghui Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Yun-Peng Zhao
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Guo P, Liu A, Qi Y, Wang X, Fan X, Guo X, Yu C, Tian C. Genome-wide identification of cold shock proteins (CSPs) in sweet cherry (Prunus avium L.) and exploring the differential responses of PavCSP1 and PavCSP3 to low temperature and salt stress. Genes Genomics 2024; 46:1023-1036. [PMID: 38997611 DOI: 10.1007/s13258-024-01542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Cold shock proteins (CSPs) are ubiquitous nucleic acid-binding proteins involved in growth, development, and stress response across various organisms. While extensively studied in many species, their regulatory roles in sweet cherry (Prunus avium L.) remain unclear. OBJECTIVE To identify and analyze CSP genes (PavCSPs) in sweet cherry genome, and explore the differential responses of PavCSP1 and PavCSP3 to low temperature and salt stress. METHODS Three methods were employed to identify and characterize CSP in sweet cherry genomes. To explore the potential functions and evolutionary relationships of sweet cherry CSP proteins, sequence alignment and phylogenetic tree incorporating genes from five species were conducted and constructed, respectively. To investigate the responses to abiotic stresses, cis-acting elements analysis and gene expression patterns to low-temperature and salt stress were examined. Moreover, transgenic yeasts overexpressing PavCSP1 or PavCSP3 were generated and their growth under stress conditions were observed. RESULTS In this study, three CSP genes (PavCSPs) were identified and comprehensively analyzed. The quantitative real-time PCR revealed diverse expression patterns, with PavCSP1-3 demonstrating a particular activity in the upper stem and all members were responsive to low-temperature and salt stress. Further investigation demonstrated that transgenic yeasts overexpressing PavCSP1 or PavCSP3 exhibited improved growth states following high-salt and low-temperature stress. CONCLUSION These findings elucidated the responses of PavCSP1 and PavCSP3 to salt and low-temperature stresses, laying the groundwork for further functional studies of PavCSPs in response to abiotic stresses.
Collapse
Affiliation(s)
- Pan Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China
| | - Ao Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China
| | - Yueting Qi
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China
| | - Xueting Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China
| | - Xiaole Fan
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China
| | - Xiaotong Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China.
| | - Changping Tian
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China.
| |
Collapse
|
5
|
Khan N, Choi SH, Lee CH, Qu M, Jeon JS. Photosynthesis: Genetic Strategies Adopted to Gain Higher Efficiency. Int J Mol Sci 2024; 25:8933. [PMID: 39201620 PMCID: PMC11355022 DOI: 10.3390/ijms25168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The global challenge of feeding an ever-increasing population to maintain food security requires novel approaches to increase crop yields. Photosynthesis, the fundamental energy and material basis for plant life on Earth, is highly responsive to environmental conditions. Evaluating the operational status of the photosynthetic mechanism provides insights into plants' capacity to adapt to their surroundings. Despite immense effort, photosynthesis still falls short of its theoretical maximum efficiency, indicating significant potential for improvement. In this review, we provide background information on the various genetic aspects of photosynthesis, explain its complexity, and survey relevant genetic engineering approaches employed to improve the efficiency of photosynthesis. We discuss the latest success stories of gene-editing tools like CRISPR-Cas9 and synthetic biology in achieving precise refinements in targeted photosynthesis pathways, such as the Calvin-Benson cycle, electron transport chain, and photorespiration. We also discuss the genetic markers crucial for mitigating the impact of rapidly changing environmental conditions, such as extreme temperatures or drought, on photosynthesis and growth. This review aims to pinpoint optimization opportunities for photosynthesis, discuss recent advancements, and address the challenges in improving this critical process, fostering a globally food-secure future through sustainable food crop production.
Collapse
Affiliation(s)
- Naveed Khan
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
| | - Seok-Hyun Choi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| | - Choon-Hwan Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| |
Collapse
|
6
|
Kim JS, Chae S, Jo JE, Kim KD, Song SI, Park SH, Choi SB, Jun KM, Shim SH, Jeon JS, Lee GS, Kim YK. OsMYB14, an R2R3-MYB transcription factor, regulates plant height through the control of hormone metabolism in rice. Mol Cells 2024; 47:100093. [PMID: 39004308 PMCID: PMC11342784 DOI: 10.1016/j.mocell.2024.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
Plant growth must be regulated throughout the plant life cycle. The myeloblastosis (MYB) transcription factor (TF) family is one of the largest TF families and is involved in metabolism, lignin biosynthesis, and developmental processes. Here, we showed that OsMYB14, a rice R2R3-MYB TF, was expressed in leaves and roots, especially in rice culm and panicles, and that it localized to the nucleus. Overexpression of OsMYB14 (OsMYB14-ox) in rice resulted in a 30% reduction in plant height compared to that of the wild type (WT), while the height of the osmyb14-knockout (osmyb14-ko) mutant generated using the CRISPR/Cas9 system was not significantly different. Microscopic observations of the first internode revealed that the cell size did not differ significantly among the lines. RNA sequencing analysis revealed that genes associated with plant development, regulation, lipid metabolism, carbohydrate metabolism, and gibberellin (GA) and auxin metabolic processes were downregulated in the OsMYB14-ox line. Hormone quantitation revealed that inactive GA19 accumulated in OsMYB14-ox but not in the WT or knockout plants, suggesting that GA20 generation was repressed. Indole-3-acetic acid (IAA) and IAA-aspartate accumulated in OsMYB14-ox and osmyb14-ko, respectively. Indeed, real-time PCR analysis revealed that the expression of OsGA20ox1, encoding GA20 oxidase 1, and OsGH3-2, encoding IAA-amido synthetase, was downregulated in OsMYB14-ox and upregulated in osmyb14-ko. A protein-binding microarray revealed the presence of a consensus DNA-binding sequence, the ACCTACC-like motif, in the promoters of the OsGA20ox1 and GA20ox2 genes. These results suggest that OsMYB14 may act as a negative regulator of biological processes affecting plant height in rice by regulating GA biosynthesis and auxin metabolism.
Collapse
Affiliation(s)
- Joung Sug Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Songhwa Chae
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Jae Eun Jo
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Kyung Do Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Sang-Ik Song
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Su Hyun Park
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Sang-Bong Choi
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Kyong Mi Jun
- Genomics Genetics Institute, GreenGene Biotech Inc, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Su-Hyeon Shim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, Jeollabuk-do 54875, Republic of Korea
| | - Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
7
|
Sun W, Shahrajabian MH, Soleymani A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:613. [PMID: 38475460 DOI: 10.3390/plants13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The application of biostimulants has been proven to be an advantageous tool and an appropriate form of management towards the effective use of natural resources, food security, and the beneficial effects on plant growth and yield. Plant-growth-promoting rhizobacteria (PGPR) are microbes connected with plant roots that can increase plant growth by different methods such as producing plant hormones and molecules to improve plant growth or providing increased mineral nutrition. They can colonize all ecological niches of roots to all stages of crop development, and they can affect plant growth and development directly by modulating plant hormone levels and enhancing nutrient acquisition such as of potassium, phosphorus, nitrogen, and essential minerals, or indirectly via reducing the inhibitory impacts of different pathogens in the forms of biocontrol parameters. Many plant-associated species such as Pseudomonas, Acinetobacter, Streptomyces, Serratia, Arthrobacter, and Rhodococcus can increase plant growth by improving plant disease resistance, synthesizing growth-stimulating plant hormones, and suppressing pathogenic microorganisms. The application of biostimulants is both an environmentally friendly practice and a promising method that can enhance the sustainability of horticultural and agricultural production systems as well as promote the quantity and quality of foods. They can also reduce the global dependence on hazardous agricultural chemicals. Science Direct, Google Scholar, Springer Link, CAB Direct, Scopus, Springer Link, Taylor and Francis, Web of Science, and Wiley Online Library were checked, and the search was conducted on all manuscript sections in accordance with the terms Acinetobacter, Arthrobacter, Enterobacter, Ochrobactrum, Pseudomonas, Rhodococcus, Serratia, Streptomyces, Biostimulants, Plant growth promoting rhizobactera, and Stenotrophomonas. The aim of this manuscript is to survey the effects of plant-growth-promoting rhizobacteria by presenting case studies and successful paradigms in various agricultural and horticultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Soleymani
- Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Plant Improvement and Seed Production Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
8
|
Yue W, Genji Y, Bowen W, Yaozu M, Yang Z, Tian M, Hailian Z, Chuanwu X, Yi C, Chunyan L. Papermaking wastewater treatment coupled to 2,3-butanediol production by engineered psychrotrophic Raoultella terrigena. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131994. [PMID: 37418966 DOI: 10.1016/j.jhazmat.2023.131994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
The simultaneous bioremediation and bioconversion of papermaking wastewater by psychrotrophic microorganisms holds great promise for developing sustainable environments and economies in cold regions. Here, the psychrotrophic bacterium Raoultella terrigena HC6 presented high endoglucanase (26.3 U/mL), xylosidase (732 U/mL), and laccase (8.07 U/mL) activities for lignocellulose deconstruction at 15 °C. mRNA monitoring and phenotypic variation analyses confirmed that cold-inducible cold shock protein A (CspA) facilitated the expression of the cel208, xynB68, and lac432 genes to increase the enzyme activities in strain HC6. Furthermore, the cspA gene-overexpressing mutant (strain HC6-cspA) was deployed in actual papermaking wastewater and achieved 44.3%, 34.1%, 18.4%, 80.2% and 100% removal rates for cellulose, hemicellulose, lignin, COD, and NO3--N at 15 °C. Simultaneously, 2,3-butanediol (2,3-BD) was produced from the effluent with a titer of 2.98 g/L and productivity of 0.154 g/L/h. This study reveals an association between the cold regulon and lignocellulolytic enzymes and provides a promising candidate for simultaneous papermaking wastewater treatment and 2,3-BD production.
Collapse
Affiliation(s)
- Wang Yue
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yang Genji
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Wu Bowen
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Mi Yaozu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zhou Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Ma Tian
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zang Hailian
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xi Chuanwu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Cheng Yi
- College of Plant Protection, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China.
| | - Li Chunyan
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China.
| |
Collapse
|
9
|
Khatab AA, Li J, Hu L, Yang J, Fan C, Wang L, Xie G. Global identification of quantitative trait loci and candidate genes for cold stress and chilling acclimation in rice through GWAS and RNA-seq. PLANTA 2022; 256:82. [PMID: 36103054 DOI: 10.1007/s00425-022-03995-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Associated analysis of GWAS with RNA-seq had detected candidate genes responsible for cold stress and chilling acclimation in rice. Haplotypes of two candidate genes and geographic distribution were analyzed. To explore new candidate genes and genetic resources for cold tolerance improvement in rice, genome-wide association study (GWAS) mapping experiments with 351 rice core germplasms was performed for three traits (survival rate, shoot length and chlorophyll content) under three temperature conditions (normal temperature, cold stress and chilling acclimation), yielding a total of 134 QTLs, of which 54, 59 and 21 QTLs were responsible for normal temperature, cold stress and chilling acclimation conditions, respectively. Integrated analysis of significant SNPs in 134 QTLs further identified 116 QTLs for three temperature treatments, 53, 43 and 18 QTLs responsible for normal temperature, cold stress and chilling acclimation, respectively, and 2 QTLs were responsible for both cold stress and chilling acclimation. Matching differentially expressed genes from RNA-seq to 43 and 18 QTLs for cold stress and chilling acclimation, we identified 69 and 44 trait-associated candidate genes, respectively, to be classified into six and five groups, particularly involved in metabolisms, reactive oxygen species scavenging and hormone signaling. Interestingly, two candidate genes LOC_Os01g04814, encoding a vacuolar protein sorting-associating protein 4B, and LOC_Os01g48440, encoding glycosyltransferase family 43 protein, showed the highest expression levels under chilling acclimation. Haplotype analysis revealed that both genes had a distinctive differentiation with subpopulation. Haplotypes of both genes with more japonica accessions have higher latitude distribution and higher chilling tolerance than the chilling sensitive indica accessions. These findings reveal the new insight into the molecular mechanism and candidate genes for cold stress and chilling acclimation in rice.
Collapse
Affiliation(s)
- Ahmed Adel Khatab
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Chuchuan Fan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingqiang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China.
| | - Guosheng Xie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Song Z, Lai X, Chen H, Wang L, Pang X, Hao Y, Lu W, Chen W, Zhu X, Li X. Role of MaABI5-like in abscisic acid-induced cold tolerance of 'Fenjiao' banana fruit. HORTICULTURE RESEARCH 2022; 9:uhac130. [PMID: 36936195 PMCID: PMC10021067 DOI: 10.1093/hr/uhac130] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/29/2022] [Indexed: 05/26/2023]
Abstract
Abscisic acid (ABA) is a phytohormone essential for plants to respond to various environmental stresses, and abscisic acid-insensitive 5 (ABI5) is a basic leucine zipper transcription factor of the ABA signaling pathway. Exogenous ABA induces cold tolerance in bananas; however, the role of MaABI5-like in ABA-induced cold tolerance remains unexplored. The present study found that exogenous ABA alleviated chilling injury of 'Fenjiao' banana, induced the accumulation of endogenous ABA, unsaturated fatty acids, and flavonoid content, and reduced the saturated fatty acid content. Moreover, ABA treatment upregulated the transcription levels of MaABI5-like, fatty acid desaturation genes, and flavonoid synthesis-related genes during cold storage. More interestingly, MaABI5-like directly interacted with the promoter of genes related to fatty acid desaturation (MaFAD3-1, MaFAD3-4, MaFAD3-5, MaFAD6-2, MaFAD6-3) and flavonoid synthesis (MaPAL-like, MaPAL-like1, MaC4H-like3, Ma4CL-like1, Ma4CL-like10, MaCHS6-4-like, and MaFLS) and activated their expressions. Furthermore, the transient overexpression of MaABI5-like in 'Fenjiao' banana fruit and ectopic expression in tomato plants enhanced cold tolerance and upregulated fatty acid desaturation and flavonoid synthesis-related gene transcript levels. The reduced expression of MaABI5-like by virus-induced gene silencing in 'Fenjiao' banana increased chilling injury and downregulated the expression of fatty acid desaturation and flavonoid synthesis-related genes. Thus, the study indicates that MaABI5-like regulates ABA-induced cold tolerance by increasing unsaturated fatty acid and flavonoid content.
Collapse
Affiliation(s)
- Zunyang Song
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, 271018, China
| | | | | | | | - Xuequn Pang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yanwei Hao
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Wangjin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Weixin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | | | | |
Collapse
|