1
|
Li MQ, Lu XY, Yao JY, Zou GJ, Zeng ZH, Zhang LX, Zhou SF, Chen ZR, Zhao TS, Guo ZR, Cui YH, Li F, Li CQ. LASP1 in the nucleus accumbens modulates methamphetamine-induced conditioned place preference in mice. Neurochem Int 2024; 180:105884. [PMID: 39419179 DOI: 10.1016/j.neuint.2024.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Methamphetamine (METH) is a highly addictive and widely abused drug that causes complex adaptive changes in the brain's reward system, such as the nucleus accumbens (NAc). LASP1 (LIM and SH 3 domain protein 1) as an actin-binding protein, regulates synaptic plasticity. However, the role and mechanism by which NAc LASP1 contributes to METH addiction remains unclear. In this study, adult male C57BL/6J mice underwent repeated METH exposure or METH-induced conditioned place preference (CPP). Western blotting and immunohistochemistry were used to determine LASP1 expression in the NAc. Furthermore, LASP1 knockdown or overexpression using adeno-associated virus (AAV) administration via stereotactic injection into the NAc was used to observe the corresponding effects on CPP. We found that repeated METH exposure and METH-induced CPP upregulated LASP1 expression in the NAc. LASP1 silencing in the NAc reversed METH-induced CPP and reduced PSD95, NR2A, and NR2B expression, whereas LASP1 overexpression in the NAc enhanced CPP acquisition, accompanied by increased PSD95, NR2A, and NR2B expression. Our findings demonstrate an important role of NAc LASP1 in modulating METH induced drug-seeking behavior and the underlying mechanism may be related to regulate the expression of synapse-associated proteins in the NAc. These results reveal a novel molecular regulator of the actions of METH on the NAc and provide a new strategy for treating METH addiction.
Collapse
Affiliation(s)
- Meng-Qing Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Jia-Yu Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Ze-Hao Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Lin-Xuan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Shi-Fen Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Zhao-Rong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Tian-Shu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Zi-Rui Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China.
| |
Collapse
|
2
|
Daiwile AP, McCoy MT, Ladenheim B, Subramaniam J, Cadet JL. Incubation of methamphetamine craving in punishment-resistant individuals is associated with activation of specific gene networks in the rat dorsal striatum. Mol Psychiatry 2024; 29:1990-2000. [PMID: 38351172 PMCID: PMC11408252 DOI: 10.1038/s41380-024-02455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Methamphetamine use disorder (MUD) is characterized by loss of control over compulsive drug use. Here, we used a self-administration (SA) model to investigate transcriptional changes associated with the development of early and late compulsivity during contingent footshocks. Punishment initially separated methamphetamine taking rats into always shock-resistant (ASR) rats that continued active lever pressing and shock-sensitive (SS) rats that reduced their lever pressing. At the end of the punishment phase, rats underwent 15 days of forced abstinence at the end of which they were re-introduced to the SA paradigm followed by SA plus contingent shocks. Interestingly, 36 percent of the initial SS rats developed delayed shock-resistance (DSR). Of translational relevance, ASR rats showed more incubation of methamphetamine craving than DSR and always sensitive (AS) rats. RNA sequencing revealed increased striatal Rab37 and Dipk2b mRNA levels that correlated with incubation of methamphetamine craving. Interestingly, Bdnf mRNA levels showed HDAC2-dependent decreased expression in the AS rats. The present SA paradigm should help to elucidate the molecular substrates of early and late addiction-like behaviors.
Collapse
Affiliation(s)
- Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224, USA
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jayanthi Subramaniam
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Shirai T, Okazaki S, Tanifuji T, Otsuka I, Horai T, Mouri K, Takemura Y, Aso K, Yamamoto N, Hishimoto A. Epigenome-wide association study on methamphetamine dependence. Addict Biol 2024; 29:e13383. [PMID: 38488760 PMCID: PMC11061849 DOI: 10.1111/adb.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Repeated abuse of methamphetamine (METH) can cause dependence, repeated relapse of psychotic symptoms, compulsive drug-seeking behaviour, and various neurological symptoms. These long-term biological changes may be associated with epigenetic mechanisms; however, the association between METH use and epigenetic mechanisms has been poorly investigated. Thus, we performed an epigenome-wide association study of METH dependence using genomic DNA extracted from the blood samples of 24 patients with METH dependence and 24 normal controls. All participants were of Japanese descent. We tested the association between METH dependence and DNA methylation using linear regression analysis. We found epigenome-wide significant associations at four CpG sites, one of which occurred in the CNOT1 gene and another in the PUM1 gene. We especially noted the CNOT1 and PUM1 genes as well as several other genes that indicated some degree of association with METH dependence. Among the relatively enriched Gene Ontology terms, we were interested in terms of mRNA metabolism, respirasome, and excitatory extracellular ligand-gated ion channel activity. Among the relatively enriched Kyoto Encyclopedia of Genes and Genome pathways, we noted pathways of several neurological diseases. Our results indicate that genetic changes akin to those in other psychiatric or neurodegenerative disorders may also occur via epigenetic mechanisms in patients with METH dependence.
Collapse
Affiliation(s)
- Toshiyuki Shirai
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Satoshi Okazaki
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Takaki Tanifuji
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Ikuo Otsuka
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Tadasu Horai
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Kentaro Mouri
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | | | - Katsuro Aso
- Department of PsychiatryFukko‐kai Tarumi HospitalKobeJapan
| | | | - Akitoyo Hishimoto
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
4
|
Blum K, Mclaughlin T, Gold MS, Gondre-Lewis MC, Thanos PK, Elman I, Baron D, Bowirrat A, Barh D, Khalsa J, Hanna C, Jafari N, Zeine F, Braverman ER, Dennen C, Makale MT, Makale M, Sunder K, Murphy KT, Badgaiyan RD. Are We Getting High Cause the Thrill is Gone? JOURNAL OF ADDICTION PSYCHIATRY 2023; 7:5-516. [PMID: 38164471 PMCID: PMC10758019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In the USA alone, opioid use disorder (OUD) affects approximately 27 million people. While the number of prescriptions may be declining due to increased CDC guidance and prescriber education, fatalities due to fentanyl-laced street heroin are still rising. Our laboratory has extended the overall concept of both substance and non-substance addictive behaviors, calling it "Reward Deficiency Syndrome (RDS)." Who are its victims, and how do we get this unwanted disorder? Is RDS caused by genes (Nature), environment (Neuro-epigenetics, Nurture), or both? Recent research identifies resting-state functional connectivity in the brain reward circuitry as a crucial factor. Analogously, it is of importance to acknowledge that the cumulative discharge of dopamine, governed by the nucleus accumbens (NAc) and modulated by an array of additional neurotransmitters, constitutes a cornerstone of an individual's overall well-being. Neuroimaging reveals that high-risk individuals exhibit a blunted response to stimuli, potentially due to DNA polymorphisms or epigenetic alterations. This discovery has given rise to the idea of a diminished 'thrill,' though we must consider whether this 'thrill' may have been absent from birth due to high-risk genetic predispositions for addiction. This article reviews this issue and suggests the general concept of the importance of "induction of dopamine homeostasis." We suggest coupling a validated genetic assessment (e.g., GARS) with pro-dopamine regulation (KB220) as one possible frontline modality in place of prescribing potent addictive opioids for OUD except for short time harm reduction. Could gene editing offer a 'cure' for this undesirable genetic modification at birth, influenced by the environment and carried over generations, leading to impaired dopamine and other neurotransmitter imbalances, as seen in RDS? Through dedicated global scientific exploration, we hope for a future where individuals are liberated from pain and disease, achieving an optimal state of well-being akin to the proverbial 'Garden of Eden'.
Collapse
Affiliation(s)
- Kenneth Blum
- The Kenneth Blum Behavioral and Neurogenetic Institute, LLC., Austin, TX, USA
- Center for Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
- The Sunder Foundation, Palm Springs, CA, USA
- Department of Psychiatry, University of Vermont School of Medicine, Burlington, VY, USA
- Department of Psychiatry, Wright University, Boonshoff School of Medicine, Dayton, OH, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - Thomas Mclaughlin
- The Kenneth Blum Behavioral and Neurogenetic Institute, LLC., Austin, TX, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addiction, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
| | - Igor Elman
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - David Baron
- Center for Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Debamyla Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - Jag Khalsa
- Division of Therapeutics and Medical Consequences, Medical Consequences of Drug Abuse and Infections Branch, NIDA-NIH, Special Volunteer, Gaithersburg, MD, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addiction, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
| | - Nicole Jafari
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA, USA
- Department of Applied Clinical Psychology, The Chicago School of Professional Psychology, Los Angeles, CA, USA
| | - Foojan Zeine
- Department of Health Science, California State University at Long Beach, Long Beach, CA, USA
- Awareness Integration Institute, San Clemente, CA, USA
| | - Eric R. Braverman
- The Kenneth Blum Behavioral and Neurogenetic Institute, LLC., Austin, TX, USA
| | - Catherine Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, La Jolla, CA, USA
| | - Miles Makale
- Department of Psychology, UC San Diego, La Jolla, CA, USA
| | - Keerthy Sunder
- The Sunder Foundation, Palm Springs, CA, USA
- Department of Psychiatry, University of California Riverside, Riverside, CA, USA
| | - Kevin T. Murphy
- Department of Radiation Oncology, University of California, San Diego, La Jolla, USA
| | | |
Collapse
|
5
|
Miao B, Xing X, Bazylianska V, Madden P, Moszczynska A, Zhang B. Methamphetamine-induced region-specific transcriptomic and epigenetic changes in the brain of male rats. Commun Biol 2023; 6:991. [PMID: 37758941 PMCID: PMC10533900 DOI: 10.1038/s42003-023-05355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Psychostimulant methamphetamine (METH) is neurotoxic to the brain and, therefore, its misuse leads to neurological and psychiatric disorders. The gene regulatory network (GRN) response to neurotoxic METH binge remains unclear in most brain regions. Here we examined the effects of binge METH on the GRN in the nucleus accumbens, dentate gyrus, Ammon's horn, and subventricular zone in male rats. At 24 h after METH, ~16% of genes displayed altered expression and over a quarter of previously open chromatin regions - parts of the genome where genes are typically active - showed shifts in their accessibility. Intriguingly, most changes were unique to each area studied, and independent regulation between transcriptome and chromatin accessibility was observed. Unexpectedly, METH differentially impacted gene activity and chromatin accessibility within the dentate gyrus and Ammon's horn. Around 70% of the affected chromatin-accessible regions in the rat brain have conserved DNA sequences in the human genome. These regions frequently act as enhancers, ramping up the activity of nearby genes, and contain mutations linked to various neurological conditions. By sketching out the gene regulatory networks associated with binge METH in specific brain regions, our study offers fresh insights into how METH can trigger profound, region-specific molecular shifts.
Collapse
Affiliation(s)
- Benpeng Miao
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Viktoriia Bazylianska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Cheng J, He Z, Chen Q, Lin J, Peng Y, Zhang J, Yan X, Yan J, Niu S. Histone modifications in cocaine, methamphetamine and opioids. Heliyon 2023; 9:e16407. [PMID: 37265630 PMCID: PMC10230207 DOI: 10.1016/j.heliyon.2023.e16407] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Cocaine, methamphetamine and opioids are leading causes of drug abuse-related deaths worldwide. In recent decades, several studies revealed the connection between and epigenetics. Neural cells acquire epigenetic alterations that drive the onset and progress of the SUD by modifying the histone residues in brain reward circuitry. Histone modifications, especially acetylation and methylation, participate in the regulation of gene expression. These alterations, as well as other host and microenvironment factors, are associated with a serious of negative neurocognitive disfunctions in various patient populations. In this review, we highlight the evidence that substantially increase the field's ability to understand the molecular actions underlying SUD and summarize the potential approaches for SUD pharmacotherapy.
Collapse
Affiliation(s)
- Junzhe Cheng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ziping He
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei Province, 430074, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| |
Collapse
|
7
|
Wang Y, Wang M, Xie B, Wen D, Li W, Zhou M, Wang X, Lu Y, Cong B, Ni Z, Ma C. Effects of molecular hydrogen intervention on the gut microbiome in methamphetamine abusers with mental disorder. Brain Res Bull 2023; 193:47-58. [PMID: 36516898 DOI: 10.1016/j.brainresbull.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Methamphetamine (METH) is a potent and highly addictive psychostimulant and one of the most widely used illicit drugs, the abuse of which has become a severe public health problem worldwide. A growing amount of evidence has indicated potential connections between gut microbiota and mental disorders induced by METH and associations with neural and metabolic pathways. The present study aimed to explore the relationship between fecal microbial alterations and neuropsychiatric diseases in METH addictions. Thus, mental disorders and gut microbial alterations were analyzed by self-rating depression (SDS) and anxiety (SAS) scales and 16 S rRNA gene sequencing, respectively. Our results showed that increased SDS and SAS indices and decreased alpha diversity indicated more serious mental disorders and lower bacterial diversity in METH users than in the age-matched healthy control group. The gut microbial composition in female METH users was also significantly altered, with reductions in hydrogen-producing bacteria, including Bacteroides and Roseburia. Molecular hydrogen (H2) is spontaneously produced by intestinal bacteria in the process of anaerobic metabolism, which is the main pathway for H2 production in vivo. Numerous studies have shown that hydrogen intervention can significantly improve neuropsychiatric diseases, including Alzheimer's disease and Parkinson's disease. Our results showed that hydrogen intervention, including drinking and inhaling, significantly alleviated mental disorders induced by METH abuse, and the inhalation of hydrogen also altered gut microbiota profiles in the METH abusers. These results suggest that hydrogen intervention has potential therapeutic applicability in the treatment of mental disorders in METH abusers.
Collapse
Affiliation(s)
- Yong Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Mengmeng Wang
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Hebei University, Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Baoding, Hebei Province 071000, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Wenbo Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Meiqi Zhou
- College of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China
| | - Xintao Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Yun Lu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Zhiyu Ni
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Hebei University, Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Baoding, Hebei Province 071000, PR China.
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China.
| |
Collapse
|
8
|
Wang H, Dong X, Awan MUN, Bai J. Epigenetic mechanisms involved in methamphetamine addiction. Front Pharmacol 2022; 13:984997. [PMID: 36091781 PMCID: PMC9458865 DOI: 10.3389/fphar.2022.984997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is widely abused. The molecular mechanism of METH addiction is complicated and still unknown. METH causes the release of the neurotransmitters including dopamine, glutamate, norepinephrine and serotonin, which activate various brain areas in the central nervous system. METH also induces synaptic plasticity and pathological memory enhancement. Epigenetics plays the important roles in regulating METH addiction. This review will briefly summarize the studies on epigenetics involved in METH addiction.
Collapse
|
9
|
Nanamori H, Sawada Y. Epigenetic Modification of PD-1/PD-L1-Mediated Cancer Immunotherapy against Melanoma. Int J Mol Sci 2022; 23:ijms23031119. [PMID: 35163049 PMCID: PMC8835029 DOI: 10.3390/ijms23031119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma is one of the representative skin cancers with unfavorable clinical behavior. Immunotherapy is currently used for the treatment, and it dramatically improves clinical outcomes in patients with advanced malignant melanoma. On the other hand, not all these patients can obtain therapeutic efficacy. To overcome this limitation of current immunotherapy, epigenetic modification is a highlighted issue for clinicians. Epigenetic modification is involved in various physiological and pathological conditions in the skin. Recent studies identified that skin cancer, especially malignant melanoma, has advantages in tumor development, indicating that epigenetic manipulation for regulation of gene expression in the tumor can be expected to result in additional therapeutic efficacy during immunotherapy. In this review, we focus on the detailed molecular mechanism of epigenetic modification in immunotherapy, especially anti-PD-1/PD-L1 antibody treatment for malignant melanoma.
Collapse
|