1
|
Parrish RL, Buchman AS, Tasaki S, Wang Y, Avey D, Xu J, De Jager PL, Bennett DA, Epstein MP, Yang J. SR-TWAS: leveraging multiple reference panels to improve transcriptome-wide association study power by ensemble machine learning. Nat Commun 2024; 15:6646. [PMID: 39103319 DOI: 10.1038/s41467-024-50983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
Multiple reference panels of a given tissue or multiple tissues often exist, and multiple regression methods could be used for training gene expression imputation models for transcriptome-wide association studies (TWAS). To leverage expression imputation models (i.e., base models) trained with multiple reference panels, regression methods, and tissues, we develop a Stacked Regression based TWAS (SR-TWAS) tool which can obtain optimal linear combinations of base models for a given validation transcriptomic dataset. Both simulation and real studies show that SR-TWAS improves power, due to increased training sample sizes and borrowed strength across multiple regression methods and tissues. Leveraging base models across multiple reference panels, tissues, and regression methods, our real studies identify 6 independent significant risk genes for Alzheimer's disease (AD) dementia for supplementary motor area tissue and 9 independent significant risk genes for Parkinson's disease (PD) for substantia nigra tissue. Relevant biological interpretations are found for these significant risk genes.
Collapse
Affiliation(s)
- Randy L Parrish
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biostatistics, Emory University School of Public Health, Atlanta, GA, 30322, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Denis Avey
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Jishu Xu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Michael P Epstein
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jingjing Yang
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Parrish RL, Buchman AS, Tasaki S, Wang Y, Avey D, Xu J, De Jager PL, Bennett DA, Epstein MP, Yang J. SR-TWAS: Leveraging Multiple Reference Panels to Improve TWAS Power by Ensemble Machine Learning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.06.20.23291605. [PMID: 37425698 PMCID: PMC10327185 DOI: 10.1101/2023.06.20.23291605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Multiple reference panels of a given tissue or multiple tissues often exist, and multiple regression methods could be used for training gene expression imputation models for TWAS. To leverage expression imputation models (i.e., base models) trained with multiple reference panels, regression methods, and tissues, we develop a Stacked Regression based TWAS (SR-TWAS) tool which can obtain optimal linear combinations of base models for a given validation transcriptomic dataset. Both simulation and real studies showed that SR-TWAS improved power, due to increased effective training sample sizes and borrowed strength across multiple regression methods and tissues. Leveraging base models across multiple reference panels, tissues, and regression methods, our real application studies identified 6 independent significant risk genes for Alzheimer's disease (AD) dementia for supplementary motor area tissue and 9 independent significant risk genes for Parkinson's disease (PD) for substantia nigra tissue. Relevant biological interpretations were found for these significant risk genes.
Collapse
|
3
|
Chiarini A, Armato U, Gui L, Dal Prà I. "Other Than NLRP3" Inflammasomes: Multiple Roles in Brain Disease. Neuroscientist 2024; 30:23-48. [PMID: 35815856 DOI: 10.1177/10738584221106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human neuroinflammatory and neurodegenerative diseases, whose prevalence keeps rising, are still unsolved pathobiological/therapeutical problems. Among others, recent etiology hypotheses stressed as their main driver a chronic neuroinflammation, which is mediated by innate immunity-related protein oligomers: the inflammasomes. A panoply of exogenous and/or endogenous harmful agents activates inflammasomes' assembly, signaling, and IL-1β/IL-18 production and neural cells' pyroptotic death. The underlying concept is that inflammasomes' chronic activation advances neurodegeneration while their short-lasting operation restores tissue homeostasis. Hence, from a therapeutic standpoint, it is crucial to understand inflammasomes' regulatory mechanisms. About this, a deluge of recent studies focused on the NLRP3 inflammasome with suggestions that its pharmacologic block would hinder neurodegeneration. Yet hitherto no evidence proves this view. Moreover, known inflammasomes are numerous, and the mechanisms regulating their expression and function may vary with the involved animal species and strains, as well as organs and cells, and the harmful factors triggered as a result. Therefore, while presently leaving out some little-studied inflammasomes, this review focuses on the "other than NLRP3" inflammasomes that participate in neuroinflammation's complex mechanisms: NLRP1, NLRP2, NLRC4, and AIM2. Although human-specific data about them are relatively scant, we stress that only a holistic view including several human brain inflammasomes and other potential pathogenetic drivers will lead to successful therapies for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Li Gui
- Department of Neurology, Southwest Hospital, Chongqing, China
| | - Ilaria Dal Prà
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
5
|
Belichenko VM, Bashirzade AA, Tenditnik MV, Dubrovina NI, Akopyan AA, Ovsyukova MV, Fedoseeva LA, Pupyshev AB, Aftanas LI, Amstislavskaya TG, Tikhonova MA. Comparative analysis of early neurodegeneration signs in a mouse model of Alzheimer's disease-like pathology induced by two types of the central (Intracerebroventricular vs. Intrahippocampal) administration of Aβ 25-35 oligomers. Behav Brain Res 2023; 454:114651. [PMID: 37657512 DOI: 10.1016/j.bbr.2023.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Animal models of Alzheimer's disease (AD) induced by intracerebroventricular (ICV) or intrahippocampal (IH) administration of amyloid-beta (Aβ) are widely used in current research. It remains unclear whether these models provide similar outcomes or mimic pathological mechanisms of AD equally. The aim of the work was to compare two models induced by ICV or IH administration of Aβ25-35 oligomers to C57BL/6 mice. Parameters characterizing cognitive function (passive avoidance test), protein expression (IBA1, Aβ, LC3-II) and expression of genes for neuroinflammation (Aif1, Lcn2, Nrf2), autophagy (Atg8, Becn1, Park2), or markers of neurodegeneration (Cst3, Insr, Vegfa) were analyzed. Сognitive deficits, amyloid accumulation, and neuroinflammatory response in the brain evaluated by the microglial activation were similar in both models. Thus, both ways of Aβ administration appear to be equally suitable for modelling AD-like pathology in mice. Our findings strongly support the key role of Aβ load and neuroinflammatory response in the hippocampus and frontal cortex for the progression of AD-like pathology and development of cognitive deficits. There were certain minor differences between the models in the mRNA level of genes involved in the processes of neuroinflammation, neurodegeneration, and autophagy. Modulating effects of the central administration of Aβ25-35 on the mRNA expression of Aif1, Lcn2, Park2, and Vegfa genes in different brain structures were revealed. The effects occurred to be more pronounced with the ICV method compared with the IH method. These findings give insight into the processes at initial stages of Aβ-induced pathology depending on a primary location of Aβ oligomers in the brain.
Collapse
Affiliation(s)
- Victor M Belichenko
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Alim A Bashirzade
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Michael V Tenditnik
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Nina I Dubrovina
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Anna A Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Marina V Ovsyukova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Larisa A Fedoseeva
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia; Federal Research Center "Institute of Cytology and Genetics", Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander B Pupyshev
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Lyubomir I Aftanas
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Maria A Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia.
| |
Collapse
|
6
|
Weaver DF. Druggable targets for the immunopathy of Alzheimer's disease. RSC Med Chem 2023; 14:1645-1661. [PMID: 37731705 PMCID: PMC10507808 DOI: 10.1039/d3md00096f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/21/2023] [Indexed: 09/22/2023] Open
Abstract
Alzheimer's disease (AD) is one of the leading threats to the health and socioeconomic well-being of humankind. Though research to develop disease modifying therapies for AD has traditionally focussed on the misfolding and aggregation of proteins, this approach has failed to yield a definitively curative agent. Accordingly, the search for additional or alternative approaches is a medicinal chemistry priority. Dysfunction of the brain's neuroimmune-neuroinflammation axis has emerged as a leading contender. Neuroimmunity however is mechanistically complex, rendering the recognition of candidate receptors a challenging task. Herein, a review of the role of neuroimmunity in the biomolecular pathogenesis of AD is presented with the identification of a 'druggable dozen' targets; in turn, each identified target represents one or more discrete receptors centred on a common biochemical mechanism. The druggable dozen is composed of both cellular and molecular messenger targets, with a 'targetable ten' microglial targets as well as two cytokine-based targets. For each target, the underlying molecular basis, with a consideration of strengths and weaknesses, is considered.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Department of Chemistry, University of Toronto 60 Leonard Avenue Toronto ON M5T 0S8 Canada
| |
Collapse
|
7
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
8
|
Tang H, Sun Y, Fachim HA, Cheung TKD, Reynolds GP, Harte MK. Elevated Expression of Two Pore Potassium Channel THIK-1 in Alzheimer's Disease: An Inflammatory Mechanism. J Alzheimers Dis 2023; 95:1757-1769. [PMID: 37718820 DOI: 10.3233/jad-230616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Tandem pore domain halothane-inhibited K+ channel 1 (THIK-1, coded by KCNK13) provides an upstream regulation of the activation of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, which has been suggested as one of the key mechanisms of the pathological process in neurodegeneration mainly from in vitro and in vivo model systems studies. However, unequivocal evidence from neurodegenerative disorders has been lacking. OBJECTIVE To investigate the involvement of the THIK-1/NLRP3 pathway in the pathological process of Alzheimer's disease (AD) and Parkinson's disease (PD). METHODS This study investigated gene expression of markers in the THIK-1/NLRP3 pathway in an animal model representing AD as well as in human postmortem brains of AD and PD by quantitative real-time PCR. THIK-1 protein expression was determined using automated capillary electrophoresis immunoblotting. Furthermore, DNA methylation of KCNK13 was analysed in AD cohort by pyrosequencing. RESULTS A substantial upregulation of KCNK13, glial activation markers, NLRP3 inflammasome components, and IL1B was observed in the animal study. Increased expression of KCNK13 support an inflammatory glial cell activation in both advanced AD and PD. The increase in KCNK13 expression was also supported by downregulation in DNA methylation of KCNK13 in AD. CONCLUSIONS The association between THIK-1 K+ channels expression and pathology changes indicates a THIK-1-induced activation of this glial subtype in AD and PD. Therefore, specific blocks of the microglial THIK-1 K+ channels at the early stage of AD and PD may be beneficial for the patients.
Collapse
Affiliation(s)
- Hao Tang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, China
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yuhong Sun
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Helene A Fachim
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | | | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Michael K Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Vontell RT, de Rivero Vaccari JP, Sun X, Gultekin SH, Bramlett HM, Dietrich WD, Keane RW. Identification of inflammasome signaling proteins in neurons and microglia in early and intermediate stages of Alzheimer's disease. Brain Pathol 2022:e13142. [PMID: 36579934 DOI: 10.1111/bpa.13142] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/08/2022] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that destroys memory and cognitive function. Inflammasome activation has been suggested to play a critical role in the neuroinflammatory response in AD progression, but the cell-type expression of inflammasome proteins in the brain has not been fully characterized. In this study, we used samples from the hippocampus formation, the subiculum, and the entorhinal cortex brain from 17 donors with low-level AD pathology and 17 intermediate AD donors to assess the expression of inflammasome proteins. We performed analysis of hippocampal thickness, β-amyloid plaques, and hyperphosphorylated tau to ascertain the cellular pathological changes that occur between low and intermediate AD pathology. Next, we determined changes in the cells that express the inflammasome sensor proteins NOD-like receptor proteins (NLRP) 1 and 3, and caspase-1. In addition, we stained section with IC100, a humanized monoclonal antibody directed against the inflammasome adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and a commercially available anti-ASC antibody. Our results indicate that hippocampal cortical thickness did not significantly change between low and intermediate AD pathology, but there was an increase in pTau and β-amyloid clusters in intermediate AD cases. NLRP3 was identified mainly in microglial populations, whereas NLRP1 was seen in neuronal cytoplasmic regions. There was a significant increase of ASC in neurons labeled by IC100, whereas microglia in the hippocampus and subiculum were labeled with the commercial anti-ASC antibody. Caspase-1 was present in the parenchyma in the CA regions where amyloid and pTau were identified. Together, our results indicate increased inflammasome protein expression in the early pathological stages of AD, that IC100 identifies neurons in early stages of AD and that ASC expression correlates with Aβ and pTau in postmortem AD brains.
Collapse
Affiliation(s)
- Regina T Vontell
- Department of Neurology, University of Miami Brain Endowment Bank, University of Miami Miller School of Medicine, Miami, Florida, USA.,Evelyn F. McKnight Brain Institute, Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, USA.,Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Xiaoyan Sun
- Department of Neurology, University of Miami Brain Endowment Bank, University of Miami Miller School of Medicine, Miami, Florida, USA.,Evelyn F. McKnight Brain Institute, Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sakir Humayun Gultekin
- Department of Neurology, University of Miami Brain Endowment Bank, University of Miami Miller School of Medicine, Miami, Florida, USA.,Evelyn F. McKnight Brain Institute, Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Helen M Bramlett
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - W Dalton Dietrich
- Evelyn F. McKnight Brain Institute, Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.,Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Robert W Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
10
|
Barczuk J, Siwecka N, Lusa W, Rozpędek-Kamińska W, Kucharska E, Majsterek I. Targeting NLRP3-Mediated Neuroinflammation in Alzheimer’s Disease Treatment. Int J Mol Sci 2022; 23:ijms23168979. [PMID: 36012243 PMCID: PMC9409081 DOI: 10.3390/ijms23168979] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the general population and, to date, constitutes a major therapeutic challenge. In the pathogenesis of AD, aggregates of amyloid β (Aβ) and neurofibrillary tangles (NFTs) containing Tau-microtubule-associated protein (tau) are known to trigger a neuroinflammatory response with subsequent formation of an inflammasome. In particular, the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is thought to play a crucial role in AD-related pathology. While the mechanisms for NLRP3 activation are not fully understood, it has been demonstrated that, after detection of protein aggregates, NLRP3 induces pro-inflammatory cytokines, such as interleukin 18 (IL-18) or interleukin 1β (IL-1β), that further potentiate AD progression. Specific inhibitors of NLRP3 that exhibit various mechanisms to attenuate the activity of NLRP3 have been tested in in vivo studies and have yielded promising results, as shown by the reduced level of tau and Aβ aggregates and diminished cognitive impairment. Herein, we would like to summarize the current state of knowledge on NLRP3 inflammasome priming, activation, and its actual role in AD pathogenesis, and to characterize the NLRP3 inhibitors that have been studied most and their impact on AD-related pathology.
Collapse
Affiliation(s)
- Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Weronika Lusa
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | | | - Ewa Kucharska
- Department of Gerontology, Geriatrics and Social Work, Jesuit University Ignatianum, 31-501 Krakow, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
- Correspondence: ; Tel.: +48-42-272-53-00
| |
Collapse
|