1
|
Paquay S, Duraffourd J, Bury M, Heremans IP, Caligiore F, Gerin I, Stroobant V, Jacobs J, Pinon A, Graff J, Vertommen D, Van Schaftingen E, Dewulf JP, Bommer GT. ACAD10 and ACAD11 allow entry of 4-hydroxy fatty acids into β-oxidation. Cell Mol Life Sci 2024; 81:367. [PMID: 39174697 PMCID: PMC11342911 DOI: 10.1007/s00018-024-05397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Hydroxylated fatty acids are important intermediates in lipid metabolism and signaling. Surprisingly, the metabolism of 4-hydroxy fatty acids remains largely unexplored. We found that both ACAD10 and ACAD11 unite two enzymatic activities to introduce these metabolites into mitochondrial and peroxisomal β-oxidation, respectively. First, they phosphorylate 4-hydroxyacyl-CoAs via a kinase domain, followed by an elimination of the phosphate to form enoyl-CoAs catalyzed by an acyl-CoA dehydrogenase (ACAD) domain. Studies in knockout cell lines revealed that ACAD10 preferentially metabolizes shorter chain 4-hydroxy fatty acids than ACAD11 (i.e. 6 carbons versus 10 carbons). Yet, recombinant proteins showed comparable activity on the corresponding 4-hydroxyacyl-CoAs. This suggests that the localization of ACAD10 and ACAD11 to mitochondria and peroxisomes, respectively, might influence their physiological substrate spectrum. Interestingly, we observed that ACAD10 is cleaved internally during its maturation generating a C-terminal part consisting of the ACAD domain, and an N-terminal part comprising the kinase domain and a haloacid dehalogenase (HAD) domain. HAD domains often exhibit phosphatase activity, but negligible activity was observed in the case of ACAD10. Yet, inactivation of a presumptive key residue in this domain significantly increased the kinase activity, suggesting that this domain might have acquired a regulatory function to prevent accumulation of the phospho-hydroxyacyl-CoA intermediate. Taken together, our work reveals that 4-hydroxy fatty acids enter mitochondrial and peroxisomal fatty acid β-oxidation via two enzymes with an overlapping substrate repertoire.
Collapse
Affiliation(s)
- Stéphanie Paquay
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
- Department of Pediatric Neurology and Metabolic Diseases, Cliniques Universitaires St. Luc, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Julia Duraffourd
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Marina Bury
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Isaac P Heremans
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Francesco Caligiore
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Isabelle Gerin
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | | | - Jean Jacobs
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Aymeric Pinon
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Julie Graff
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Didier Vertommen
- Protein Phosphorylation Unit, de Duve Institute & MASSPROT Platform, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Emile Van Schaftingen
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Joseph P Dewulf
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
- Department of Laboratory Medicine, Cliniques Universitaires St. Luc, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Guido T Bommer
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium.
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
2
|
Stamellou E, Sterzer V, Alam J, Roumeliotis S, Liakopoulos V, Dounousi E. Sex-Specific Differences in Kidney Function and Blood Pressure Regulation. Int J Mol Sci 2024; 25:8637. [PMID: 39201324 PMCID: PMC11354550 DOI: 10.3390/ijms25168637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Premenopausal women generally exhibit lower blood pressure and a lower prevalence of hypertension than men of the same age, but these differences reverse postmenopause due to estrogen withdrawal. Sexual dimorphism has been described in different components of kidney physiology and pathophysiology, including the renin-angiotensin-aldosterone system, endothelin system, and tubular transporters. This review explores the sex-specific differences in kidney function and blood pressure regulation. Understanding these differences provides insights into potential therapeutic targets for managing hypertension and kidney diseases, considering the patient's sex and hormonal status.
Collapse
Affiliation(s)
- Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Viktor Sterzer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Jessica Alam
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Stefanos Roumeliotis
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Vassilios Liakopoulos
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| |
Collapse
|
3
|
Lei C, Liu J, Zhang R, Pan Y, Lu Y, Gao Y, Ma X, Yang Y, Guan Y, Mamatyusupu D, Xu S. Ancestral Origins and Admixture History of Kazakhs. Mol Biol Evol 2024; 41:msae144. [PMID: 38995236 PMCID: PMC11272102 DOI: 10.1093/molbev/msae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Kazakh people, like many other populations that settled in Central Asia, demonstrate an array of mixed anthropological features of East Eurasian (EEA) and West Eurasian (WEA) populations, indicating a possible scenario of biological admixture between already differentiated EEA and WEA populations. However, their complex biological origin, genomic makeup, and genetic interaction with surrounding populations are not well understood. To decipher their genetic structure and population history, we conducted, to our knowledge, the first whole-genome sequencing study of Kazakhs residing in Xinjiang (KZK). We demonstrated that KZK derived their ancestries from 4 ancestral source populations: East Asian (∼39.7%), West Asian (∼28.6%), Siberian (∼23.6%), and South Asian (∼8.1%). The recognizable interactions of EEA and WEA ancestries in Kazakhs were dated back to the 15th century BCE. Kazakhs were genetically distinctive from the Uyghurs in terms of their overall genomic makeup, although the 2 populations were closely related in genetics, and both showed a substantial admixture of western and eastern peoples. Notably, we identified a considerable sex-biased admixture, with an excess of western males and eastern females contributing to the KZK gene pool. We further identified a set of genes that showed remarkable differentiation in KZK from the surrounding populations, including those associated with skin color (SLC24A5, OCA2), essential hypertension (HLA-DQB1), hypertension (MTHFR, SLC35F3), and neuron development (CNTNAP2). These results advance our understanding of the complex history of contacts between Western and Eastern Eurasians, especially those living or along the old Silk Road.
Collapse
Affiliation(s)
- Chang Lei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaojiao Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rui Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Lu
- Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xixian Ma
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yaqun Guan
- Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi 830011, China
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, Urumqi 830046, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| |
Collapse
|
4
|
Tran TT, Gunathilake M, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. The Association of Low-Carbohydrate Diet and HECTD4 rs11066280 Polymorphism with Risk of Colorectal Cancer: A Case-Control Study in Korea. Curr Dev Nutr 2024; 8:102127. [PMID: 38523829 PMCID: PMC10959645 DOI: 10.1016/j.cdnut.2024.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Background Glucose is a main source of energy for tumor cells. Thus, a low-carbohydrate diet (LCD) is thought to make a significant contribution to cancer prevention. In addition, LCD and HECT domain E3 ubiquitin protein ligase 4 (HECTD4) gene may be related to insulin resistance. Objectives We explored whether LCD score and HECTD4 rs11066280 are etiological factors for colorectal cancer (CRC) and whether LCD score interacts with HECTD4 rs11066280 to modify CRC risk. Methods We included 1457 controls and 1062 cases in a case-control study. The LCD score was computed based on the proportion of energy obtained from carbohydrate, protein, and fat, as determined by a semiquantitative food frequency questionnaire. We used unconditional logistic regression models to explore the association of HECTD4 with CRC prevention and interaction of LCD score and HECTD4 polymorphism with CRC preventability. Results Individuals with AA/AT genotypes who carried a minor allele (A) of HECTD4 rs11066280 exhibited a decreased CRC risk [odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.62, 0.91]. In addition, a protective effect of high LCD score against CRC development was identified (OR = 0.52, 95% CI: 0.40, 0.68, P for trend <0.001). However, the effect of LCD depended on individual's genetic background, which appears only in participants with TT genotype of HECTD4 rs11066280 [OR = 0.49 (0.36-0.68), P interaction = 0.044]. Conclusions Our findings suggest a protective effect of LCD and a minor allele of HECTD4 rs11066280 against CRC development. In addition, we provide an understanding of the interaction effect of LCD and HECTD4 rs11066280 on CRC, which may be helpful for establishing diet plans regarding cancer prevention.
Collapse
Affiliation(s)
- Tao Thi Tran
- Department of Cancer AI & Digital Health, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, South Korea
- Faculty of Public Health, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Madhawa Gunathilake
- Department of Cancer AI & Digital Health, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, South Korea
| | - Jeonghee Lee
- Department of Cancer AI & Digital Health, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, South Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | - Hee Jin Chang
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul, South Korea
| | - Jeongseon Kim
- Department of Cancer AI & Digital Health, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, South Korea
| |
Collapse
|
5
|
Yee J, Park T, Park M. Identification of the associations between genes and quantitative traits using entropy-based kernel density estimation. Genomics Inform 2022; 20:e17. [PMID: 35794697 PMCID: PMC9299569 DOI: 10.5808/gi.22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Genetic associations have been quantified using a number of statistical measures. Entropy-based mutual information may be one of the more direct ways of estimating the association, in the sense that it does not depend on the parametrization. For this purpose, both the entropy and conditional entropy of the phenotype distribution should be obtained. Quantitative traits, however, do not usually allow an exact evaluation of entropy. The estimation of entropy needs a probability density function, which can be approximated by kernel density estimation. We have investigated the proper sequence of procedures for combining the kernel density estimation and entropy estimation with a probability density function in order to calculate mutual information. Genotypes and their interactions were constructed to set the conditions for conditional entropy. Extensive simulation data created using three types of generating functions were analyzed using two different kernels as well as two types of multifactor dimensionality reduction and another probability density approximation method called m-spacing. The statistical power in terms of correct detection rates was compared. Using kernels was found to be most useful when the trait distributions were more complex than simple normal or gamma distributions. A full-scale genomic dataset was explored to identify associations using the 2-h oral glucose tolerance test results and γ-glutamyl transpeptidase levels as phenotypes. Clearly distinguishable single-nucleotide polymorphisms (SNPs) and interacting SNP pairs associated with these phenotypes were found and listed with empirical p-values.
Collapse
Affiliation(s)
- Jaeyong Yee
- Department of Physiology and Biophysics, Eulji University, Daejeon 34824, Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul 08826, Korea
| | - Mira Park
- Department of Preventive Medicine, Eulji University, Daejeon 34824, Korea
| |
Collapse
|