1
|
Paquin F, Cristescu ME, Blier PU, Lemieux H, Dufresne F. Cumulative effects of mutation accumulation on mitochondrial function and fitness. Mitochondrion 2025; 80:101976. [PMID: 39486563 DOI: 10.1016/j.mito.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The impact of mutations on the mitochondria deserves specific interest due to the crucial role played by these organelles on numerous cellular functions. This study examines the effects of repeated bottlenecks on mitochondrial function and fitness. Daphnia pulex mutation accumulation lines (MA) lines were maintained for over 120 generations under copper and no copper conditions. Following the MA propagation, Daphnia from MA lines were raised under optimal and high temperatures for two generations before assessing mitochondrial and phenotypic traits. Spontaneous mutation accumulation under copper led to a later age at maturity and lowered fecundity in the MA lines. Mitochondrial respiration was found to be 10% lower in all mutation accumulation (MA) lines as compared to the non-MA control. MtDNA copy number was elevated in MA lines compared to the control under optimal temperature suggesting a compensatory mechanism. Three MA lines propagated under low copper had very low mtDNA copy number and fitness, suggesting mutations might have affected genes involved in mtDNA replication or mitochondrial biogenesis. Overall, our study suggests that mutation accumulation had an impact on life history traits, mtDNA copy number, and mitochondrial respiration. Some phenotypic effects were magnified under high temperatures. MtDNA copy number appears to be an important mitigation factor to allow mitochondria to cope with mutation accumulation up to a certain level beyond which it can no longer compensate.
Collapse
Affiliation(s)
- Frédérique Paquin
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Melania E Cristescu
- Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, Québec H3A 1B1, Canada
| | - Pierre U Blier
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Hélène Lemieux
- Department of Medicine, Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta T6C 4G9, Canada
| | - France Dufresne
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada.
| |
Collapse
|
2
|
Aneli S, Ceccatelli Berti C, Gilea AI, Birolo G, Mutti G, Pavesi A, Baruffini E, Goffrini P, Capelli C. Functional characterization of archaic-specific variants in mitonuclear genes: insights from comparative analysis in S. cerevisiae. Hum Mol Genet 2024; 33:1152-1163. [PMID: 38558123 DOI: 10.1093/hmg/ddae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Neanderthal and Denisovan hybridisation with modern humans has generated a non-random genomic distribution of introgressed regions, the result of drift and selection dynamics. Cross-species genomic incompatibility and more efficient removal of slightly deleterious archaic variants have been proposed as selection-based processes involved in the post-hybridisation purge of archaic introgressed regions. Both scenarios require the presence of functionally different alleles across Homo species onto which selection operated differently according to which populations hosted them, but only a few of these variants have been pinpointed so far. In order to identify functionally divergent archaic variants removed in humans, we focused on mitonuclear genes, which are underrepresented in the genomic landscape of archaic humans. We searched for non-synonymous, fixed, archaic-derived variants present in mitonuclear genes, rare or absent in human populations. We then compared the functional impact of archaic and human variants in the model organism Saccharomyces cerevisiae. Notably, a variant within the mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) gene exhibited a significant decrease in respiratory activity and a substantial reduction of Cox2 levels, a proxy for mitochondrial protein biosynthesis, coupled with the accumulation of the YARS2 protein precursor and a lower amount of mature enzyme. Our work suggests that this variant is associated with mitochondrial functionality impairment, thus contributing to the purging of archaic introgression in YARS2. While different molecular mechanisms may have impacted other mitonuclear genes, our approach can be extended to the functional screening of mitonuclear genetic variants present across species and populations.
Collapse
Affiliation(s)
- Serena Aneli
- Department of Public Health Sciences and Pediatrics, University of Turin, C.so Galileo Galilei 22, Turin 10126, Italy
| | - Camilla Ceccatelli Berti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
| | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, Via Santena 5, Turin 10126, Italy
| | - Giacomo Mutti
- Barcelona Supercomputing Centre (BSC-CNS), Department of Life Sciences, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Department of Mechanisms of Disease, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Angelo Pavesi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
| | - Cristian Capelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
- Department of Biology, University of Oxford, 11a Mansfield Rd, Oxford OX1 3SZ, United Kingdom
| |
Collapse
|
3
|
Chen A, Yangzom T, Hong Y, Lundberg BC, Sullivan GJ, Tzoulis C, Bindoff LA, Liang KX. Hallmark Molecular and Pathological Features of POLG Disease are Recapitulated in Cerebral Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307136. [PMID: 38445970 PMCID: PMC11095234 DOI: 10.1002/advs.202307136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Indexed: 03/07/2024]
Abstract
In this research, a 3D brain organoid model is developed to study POLG-related encephalopathy, a mitochondrial disease stemming from POLG mutations. Induced pluripotent stem cells (iPSCs) derived from patients with these mutations is utilized to generate cortical organoids, which exhibited typical features of the diseases with POLG mutations, such as altered morphology, neuronal loss, and mitochondiral DNA (mtDNA) depletion. Significant dysregulation is also identified in pathways crucial for neuronal development and function, alongside upregulated NOTCH and JAK-STAT signaling pathways. Metformin treatment ameliorated many of these abnormalities, except for the persistent affliction of inhibitory dopamine-glutamate (DA GLU) neurons. This novel model effectively mirrors both the molecular and pathological attributes of diseases with POLG mutations, providing a valuable tool for mechanistic understanding and therapeutic screening for POLG-related disorders and other conditions characterized by compromised neuronal mtDNA maintenance and complex I deficiency.
Collapse
Affiliation(s)
- Anbin Chen
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Department of NeurosurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai20092China
| | - Tsering Yangzom
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Centre for International HealthUniversity of BergenBergen5020Norway
| | - Yu Hong
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
| | - Bjørn Christian Lundberg
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Department of BiomedicineUniversity of BergenBergen5009Norway
| | | | - Charalampos Tzoulis
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Neuro‐SysMedCenter of Excellence for Clinical Research in Neurological DiseasesHaukeland University HospitalBergen5021Norway
| | | | | |
Collapse
|
4
|
Gilea AI, Magistrati M, Notaroberto I, Tiso N, Dallabona C, Baruffini E. The Saccharomyces cerevisiae mitochondrial DNA polymerase and its contribution to the knowledge about human POLG-related disorders. IUBMB Life 2023; 75:983-1002. [PMID: 37470284 DOI: 10.1002/iub.2770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.
Collapse
Affiliation(s)
- Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ilenia Notaroberto
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Zheng J, Liu S, Wang D, Li L, Sarsaiya S, Zhou H, Cai H. Unraveling the functional consequences of a novel germline missense mutation (R38C) in the yeast model of succinate dehydrogenase subunit B: insights into neurodegenerative disorders. Front Mol Neurosci 2023; 16:1246842. [PMID: 37840772 PMCID: PMC10568460 DOI: 10.3389/fnmol.2023.1246842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
This study explores the implications of a novel germline missense mutation (R38C) in the succinate dehydrogenase (SDH) subunit B, which has been linked to neurodegenerative diseases. The mutation was identified from the SDH mutation database and corresponds to the SDH2R32C allele, mirroring the human SDHBR38C mutation. By subjecting the mutant yeast model to hydrogen peroxide (H2O2) stress, simulating oxidative stress, we observed heightened sensitivity to oxidative conditions. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed significant regulation (p < 0.05) of genes associated with antioxidant systems and energy metabolism. Through gas chromatography-mass spectrometry (GC-MS) analysis, we examined yeast cell metabolites under oxidative stress, uncovering insights into the potential protective role of o-vanillin. This study elucidates the biological mechanisms underlying cellular oxidative stress responses, offering valuable insights into its repercussions. These findings shed light on innovative avenues for addressing neurodegenerative diseases, potentially revolutionizing therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Heng Cai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
6
|
Viggiano L, Marsano RM. The Stability and Evolution of Genes and Genomes. Genes (Basel) 2023; 14:1747. [PMID: 37761887 PMCID: PMC10531423 DOI: 10.3390/genes14091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 09/29/2023] Open
Abstract
The existence of current species can be attributed to a dynamic interplay between evolutionary forces and the maintenance of genetic information [...].
Collapse
Affiliation(s)
- Luigi Viggiano
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università degli Studi di Bari “Aldo Moro”, 70121 Bari, Italy
| | - René Massimiliano Marsano
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università degli Studi di Bari “Aldo Moro”, 70121 Bari, Italy
| |
Collapse
|
7
|
Lewis GR, Marshall WF. Mitochondrial networks through the lens of mathematics. Phys Biol 2023; 20:051001. [PMID: 37290456 PMCID: PMC10347554 DOI: 10.1088/1478-3975/acdcdb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/10/2023]
Abstract
Mitochondria serve a wide range of functions within cells, most notably via their production of ATP. Although their morphology is commonly described as bean-like, mitochondria often form interconnected networks within cells that exhibit dynamic restructuring through a variety of physical changes. Further, though relationships between form and function in biology are well established, the extant toolkit for understanding mitochondrial morphology is limited. Here, we emphasize new and established methods for quantitatively describing mitochondrial networks, ranging from unweighted graph-theoretic representations to multi-scale approaches from applied topology, in particular persistent homology. We also show fundamental relationships between mitochondrial networks, mathematics, and physics, using ideas of graph planarity and statistical mechanics to better understand the full possible morphological space of mitochondrial network structures. Lastly, we provide suggestions for how examination of mitochondrial network form through the language of mathematics can inform biological understanding, and vice versa.
Collapse
Affiliation(s)
- Greyson R Lewis
- Biophysics Graduate Program, University of California—San Francisco, San Francisco, CA, United States of America
- NSF Center for Cellular Construction, Department of Biochemistry and Biophysics, UCSF, 600 16th St., San Francisco, CA, United States of America
- Department of Biochemistry and Biophysics, Center for Cellular Construction, University of California San Francisco, San Francisco, CA, United States of America
| | - Wallace F Marshall
- NSF Center for Cellular Construction, Department of Biochemistry and Biophysics, UCSF, 600 16th St., San Francisco, CA, United States of America
- Department of Biochemistry and Biophysics, Center for Cellular Construction, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
8
|
Magistrati M, Gilea AI, Gerra MC, Baruffini E, Dallabona C. Drug Drop Test: How to Quickly Identify Potential Therapeutic Compounds for Mitochondrial Diseases Using Yeast Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:10696. [PMID: 37445873 DOI: 10.3390/ijms241310696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondrial diseases (MDs) refer to a group of clinically and genetically heterogeneous pathologies characterized by defective mitochondrial function and energy production. Unfortunately, there is no effective treatment for most MDs, and current therapeutic management is limited to relieving symptoms. The yeast Saccharomyces cerevisiae has been efficiently used as a model organism to study mitochondria-related disorders thanks to its easy manipulation and well-known mitochondrial biogenesis and metabolism. It has been successfully exploited both to validate alleged pathogenic variants identified in patients and to discover potential beneficial molecules for their treatment. The so-called "drug drop test", a phenotype-based high-throughput screening, especially if coupled with a drug repurposing approach, allows the identification of molecules with high translational potential in a cost-effective and time-saving manner. In addition to drug identification, S. cerevisiae can be used to point out the drug's target or pathway. To date, drug drop tests have been successfully carried out for a variety of disease models, leading to very promising results. The most relevant aspect is that studies on more complex model organisms confirmed the effectiveness of the drugs, strengthening the results obtained in yeast and demonstrating the usefulness of this screening as a novel approach to revealing new therapeutic molecules for MDs.
Collapse
Affiliation(s)
- Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
9
|
Nguyen THM, Tinz-Burdick A, Lenhardt M, Geertz M, Ramirez F, Schwartz M, Toledano M, Bonney B, Gaebler B, Liu W, Wolters JF, Chiu K, Fiumera AC, Fiumera HL. Mapping mitonuclear epistasis using a novel recombinant yeast population. PLoS Genet 2023; 19:e1010401. [PMID: 36989278 PMCID: PMC10085025 DOI: 10.1371/journal.pgen.1010401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genetic variation in mitochondrial and nuclear genomes can perturb mitonuclear interactions and lead to phenotypic differences between individuals and populations. Despite their importance to most complex traits, it has been difficult to identify the interacting mitonuclear loci. Here, we present a novel advanced intercrossed population of Saccharomyces cerevisiae yeasts, called the Mitonuclear Recombinant Collection (MNRC), designed explicitly for detecting mitonuclear loci contributing to complex traits. For validation, we focused on mapping genes that contribute to the spontaneous loss of mitochondrial DNA (mtDNA) that leads to the petite phenotype in yeast. We found that rates of petite formation in natural populations are variable and influenced by genetic variation in nuclear DNA, mtDNA and mitonuclear interactions. We mapped nuclear and mitonuclear alleles contributing to mtDNA stability using the MNRC by integrating a term for mitonuclear epistasis into a genome-wide association model. We found that the associated mitonuclear loci play roles in mitotic growth most likely responding to retrograde signals from mitochondria, while the associated nuclear loci with main effects are involved in genome replication. We observed a positive correlation between growth rates and petite frequencies, suggesting a fitness tradeoff between mitotic growth and mtDNA stability. We also found that mtDNA stability was correlated with a mobile mitochondrial GC-cluster that is present in certain populations of yeast and that selection for nuclear alleles that stabilize mtDNA may be rapidly occurring. The MNRC provides a powerful tool for identifying mitonuclear interacting loci that will help us to better understand genotype-phenotype relationships and coevolutionary trajectories.
Collapse
Affiliation(s)
- Tuc H M Nguyen
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
- Department of Biological Sciences, New York University, New York, New York, United States of America
| | - Austen Tinz-Burdick
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Meghan Lenhardt
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Margaret Geertz
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Franchesca Ramirez
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Mark Schwartz
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Michael Toledano
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Brooke Bonney
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Benjamin Gaebler
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Weiwei Liu
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - John F Wolters
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Kenneth Chiu
- Department of Computer Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Anthony C Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Heather L Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| |
Collapse
|
10
|
Staneva D, Vasileva B, Podlesniy P, Miloshev G, Georgieva M. Yeast Chromatin Mutants Reveal Altered mtDNA Copy Number and Impaired Mitochondrial Membrane Potential. J Fungi (Basel) 2023; 9:jof9030329. [PMID: 36983497 PMCID: PMC10058930 DOI: 10.3390/jof9030329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Mitochondria are multifunctional, dynamic organelles important for stress response, cell longevity, ageing and death. Although the mitochondrion has its genome, nuclear-encoded proteins are essential in regulating mitochondria biogenesis, morphology, dynamics and function. Moreover, chromatin structure and epigenetic mechanisms govern the accessibility to DNA and control gene transcription, indirectly influencing nucleo-mitochondrial communications. Thus, they exert crucial functions in maintaining proper chromatin structure, cell morphology, gene expression, stress resistance and ageing. Here, we present our studies on the mtDNA copy number in Saccharomyces cerevisiae chromatin mutants and investigate the mitochondrial membrane potential throughout their lifespan. The mutants are arp4 (with a point mutation in the ARP4 gene, coding for actin-related protein 4-Arp4p), hho1Δ (lacking the HHO1 gene, coding for the linker histone H1), and the double mutant arp4 hho1Δ cells with the two mutations. Our findings showed that the three chromatin mutants acquired strain-specific changes in the mtDNA copy number. Furthermore, we detected the disrupted mitochondrial membrane potential in their chronological lifespan. In addition, the expression of nuclear genes responsible for regulating mitochondria biogenesis and turnover was changed. The most pronounced were the alterations found in the double mutant arp4 hho1Δ strain, which appeared as the only petite colony-forming mutant, unable to grow on respiratory substrates and with partial depletion of the mitochondrial genome. The results suggest that in the studied chromatin mutants, hho1Δ, arp4 and arp4 hho1Δ, the nucleus-mitochondria communication was disrupted, leading to impaired mitochondrial function and premature ageing phenotype in these mutants, especially in the double mutant.
Collapse
Affiliation(s)
- Dessislava Staneva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Bela Vasileva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petar Podlesniy
- CiberNed (Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas), 28029 Barcelona, Spain
| | - George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
11
|
Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int J Mol Sci 2023; 24:ijms24032178. [PMID: 36768505 PMCID: PMC9917222 DOI: 10.3390/ijms24032178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.
Collapse
|
12
|
Feng J, Chen Z, Liang W, Wei Z, Ding G. Roles of Mitochondrial DNA Damage in Kidney Diseases: A New Biomarker. Int J Mol Sci 2022; 23:ijms232315166. [PMID: 36499488 PMCID: PMC9735745 DOI: 10.3390/ijms232315166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The kidney is a mitochondria-rich organ, and kidney diseases are recognized as mitochondria-related pathologies. Intact mitochondrial DNA (mtDNA) maintains normal mitochondrial function. Mitochondrial dysfunction caused by mtDNA damage, including impaired mtDNA replication, mtDNA mutation, mtDNA leakage, and mtDNA methylation, is involved in the progression of kidney diseases. Herein, we review the roles of mtDNA damage in different setting of kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD). In a variety of kidney diseases, mtDNA damage is closely associated with loss of kidney function. The level of mtDNA in peripheral serum and urine also reflects the status of kidney injury. Alleviating mtDNA damage can promote the recovery of mitochondrial function by exogenous drug treatment and thus reduce kidney injury. In short, we conclude that mtDNA damage may serve as a novel biomarker for assessing kidney injury in different causes of renal dysfunction, which provides a new theoretical basis for mtDNA-targeted intervention as a therapeutic option for kidney diseases.
Collapse
Affiliation(s)
- Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhongping Wei
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
- Correspondence:
| |
Collapse
|