1
|
Vela J, Mora P, Montiel EE, Rico-Porras JM, Sanllorente O, Amoasii D, Lorite P, Palomeque T. Exploring horizontal transfer of mariner transposable elements among ants and aphids. Gene 2024; 899:148144. [PMID: 38195050 DOI: 10.1016/j.gene.2024.148144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Aphids and ants are mutualistic species with a close space-time relationship, which may facilitate the occurrence of horizontal transfer events between these insect groups. Myrmar-like mariner elements were previously isolated from two ant (Myrmica ruginodis and Tapinoma ibericum) and two aphid species (Aphis fabae and Aphis hederae). The aim of this work is to determine the presence of Myrmar-like mariner elements in new ant and aphid species, as well as to analyze the likelihood of horizontal transfer events between these taxa. To accomplish this, the Myrmar-like element has been isolated from five aphid species and six ant species. Among these new analyzed species, full-length Myrmar-like mariner elements with very high sequence similarity have been isolated from the aphids Aphis nerii, Aphis spiraecola, Brachycaudus cardui, and Rhopalosiphum maidis as well as from the ants Lasius grandis and Lasius niger, even though aphids and ants belong to two insect orders (Hemiptera and Hymenoptera) that have evolved independently for at least 300 million-years. Both Lasius species establish frequent mutualistic relationships with multiple aphid species, including A. nerii, A. spiraecola, and B. cardui. The study of the putative protein encoded by them and the phylogenetic analysis suggests that they could be active transposons shared by aphids and ants through horizontal transfer events. Additionally, mariner elements with internal deletion were found in several aphids and one ant species, showing a high degree of sequence similarity among them. The characteristics of these elements with internal deletion suggest a complex origin involving various evolutionary processes, possibly including also horizontal transfer events. Myrmar-like elements have also been isolated from the other ant species, although without similarity with the aphid mariner sequences. Myrmar-like elements are also present in phylogenetically distant insect species, as well as in one crustacean species. The phylogenetic study carried out with all Myrmar-like elements suggests the probable occurrence of horizontal transfer events.
Collapse
Affiliation(s)
- Jesús Vela
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071 Jaén, Spain.
| | - Pablo Mora
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071 Jaén, Spain.
| | - Eugenia E Montiel
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - José M Rico-Porras
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071 Jaén, Spain.
| | - Olivia Sanllorente
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - Daniela Amoasii
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071 Jaén, Spain.
| | - Pedro Lorite
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071 Jaén, Spain.
| | - Teresa Palomeque
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071 Jaén, Spain.
| |
Collapse
|
2
|
Alotaibi NJ, Alsufyani T, M’sakni NH, Almalki MA, Alghamdi EM, Spiteller D. Rapid Identification of Aphid Species by Headspace GC-MS and Discriminant Analysis. INSECTS 2023; 14:589. [PMID: 37504595 PMCID: PMC10380428 DOI: 10.3390/insects14070589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Aphids are a ubiquitous group of pests in agriculture that cause serious losses. For sustainable aphid identification, it is necessary to develop a precise and fast aphid identification tool. A new simple chemotaxonomy approach to rapidly identify aphids was implemented. The method was calibrated in comparison to the established phylogenetic analysis. For chemotaxonomic analysis, aphids were crushed, their headspace compounds were collected through closed-loop stripping (CLS) and analysed using gas chromatography-mass spectrometry (GC-MS). GC-MS data were then subjected to a discriminant analysis using CAP12.exe software, which identified key biomarkers that distinguish aphid species. A dichotomous key taking into account the presence and absence of a set of species-specific biomarkers was derived from the discriminant analysis which enabled rapid and reliable identification of aphid species. As the method overcomes the limits of morphological identification, it works with aphids at all life stages and in both genders. Thus, our method enables entomologists to assign aphids to growth stages and identify the life history of the investigated aphids, i.e., the food plant(s) they fed on. Our experiments clearly showed that the method could be used as a software to automatically identify aphids.
Collapse
Affiliation(s)
- Noura J. Alotaibi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.H.M.); (M.A.A.)
| | - Nour Houda M’sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.H.M.); (M.A.A.)
| | - Mona A. Almalki
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.H.M.); (M.A.A.)
| | - Eman M. Alghamdi
- Chemistry Department, Faculty of Science, King AbdulAziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
| | - Dieter Spiteller
- Chemical Ecology/Biological Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany;
| |
Collapse
|
3
|
Alsufyani T, Al-Otaibi N, Alotaibi NJ, M'sakni NH, Alghamdi EM. GC Analysis, Anticancer, and Antibacterial Activities of Secondary Bioactive Compounds from Endosymbiotic Bacteria of Pomegranate Aphid and Its Predator and Protector. Molecules 2023; 28:molecules28104255. [PMID: 37241995 DOI: 10.3390/molecules28104255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial secondary metabolites are a valuable source of various molecules that have antibacterial and anticancer activity. In this study, ten endosymbiotic bacteria of aphids, aphid predators and ants were isolated. Bacterial strains were identified according to the 16S rRNA gene. Ethyl acetate fractions of methanol extract (EA-ME) were prepared from each isolated bacterium and tested for their antibacterial activities using the disk diffusion method. The EA-ME of three bacterial species, Planococcus sp., Klebsiella aerogenes, Enterococcus avium, from the pomegranate aphids Aphis punicae, Chrysoperia carnea, and Tapinoma magnum, respectively, exhibited elevated antibacterial activity against one or several of the five pathogenic bacteria tested. The inhibition zones ranged from 10.00 ± 0.13 to 20.00 ± 1.11 mm, with minimum inhibitory concentration (MIC) values ranging from 0.156 mg/mL to 1.25 mg/mL. The most notable antibacterial activity was found in the EA-ME of K. aerogenes against Klebsiella pneumonia and Escherichia coli, with an MIC value of 0.156 mg/mL. The cytotoxic activity of EA-ME was dependent on the cell line tested. The most significant cytotoxicity effect was observed for extracts of K. aerogenes and E. avium, at 12.5 µg/mL, against the epithelial cells of lung carcinoma (A549), with a cell reduction of 79.4% and 67.2%, respectively. For the EA-ME of K. aerogenes and Pantoea agglomerans at 12.5 µg/mL, 69.4% and 67.8% cell reduction were observed against human colon cancer (Hct116), respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of three EA-ME revealed the presence of several bioactive secondary metabolites that have been reported previously to possess antibacterial and anticancer properties. To the best of our knowledge, this is the first study to examine the biological activities of endosymbiotic bacteria in aphids, aphid predators and ants. The promising data presented in this study may pave the way for alternative drugs to overcome the continued emergence of multidrug-resistant bacteria, and find alternative drugs to conventional cancer therapies.
Collapse
Affiliation(s)
- Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Najwa Al-Otaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noura J Alotaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nour Houda M'sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Laboratory of the Interfaces and Advanced Materials (LIMA), Science Faculty, Monastir University, P.O. Box 05019, Monastir 5019, Tunisia
| | - Eman M Alghamdi
- Chemistry Department, Faculty of Science, King Abdul Aziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Expanding the Chromosomal Evolution Understanding of Lygaeioid True Bugs (Lygaeoidea, Pentatomomorpha, Heteroptera) by Classical and Molecular Cytogenetic Analysis. Genes (Basel) 2023; 14:genes14030725. [PMID: 36980997 PMCID: PMC10048555 DOI: 10.3390/genes14030725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
The Lygaeoidea comprise about 4660 in 790 genera and 16 families. Using standard chromosome staining and FISH with 18S rDNA and telomeric (TTAGG)n probes, we studied male karyotypes and meiosis in 10 species of Lygaeoidea belonging to eight genera of the families Blissidae, Cymidae, Heterogastridae, Lygaeidae, and Rhyparochromidae. Chromosome numbers were shown to range from 12 to 28, with 2n = 14 being predominant. All species have an XY system and all but one has a pair of m-chromosomes. The exception is Spilostethus saxatilis (Lygaeidae: Lygaeinae); in another species of Lygaeinae, Thunbergia floridulus, m-chromosomes were present, which represent the first finding for this subfamily. All species have an inverted sequence of sex chromosome divisions (“post-reduction”). The 18S rDNA loci were observed on one or both sex chromosomes in Kleidocerys resedae and Th. floridulus, respectively (Lygaeidae), while on an autosomal bivalent in all other species. The rDNA loci tended to be close to the end of the chromosome. Using (TTAGG)n—FISH, we were able to show for the first time that the Lygaeoidea lack the canonical “insect” telomere motif (TTAGG)n. We speculate that this ancestral motif is absent from the entire infraorder Pentatomomorpha being replaced by some other telomere repeat motif sequences.
Collapse
|
5
|
Kou X, Bai S, Luo Y, Yu J, Guo H, Wang C, Zhang H, Chen C, Liu X, Ji W. Construction of a Modified Clip Cage and Its Effects on the Life-History Parameters of Sitobion avenae (Fabricius) and Defense Responses of Triticum aestivum. INSECTS 2022; 13:777. [PMID: 36135478 PMCID: PMC9503654 DOI: 10.3390/insects13090777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Clip cages are commonly used to confine aphids or other small insects to a single leaf when conducting plant-small insect interaction studies; however, clip cages are usually heavy or do not efficiently transmit light, which has an impact on leaf physiology, limiting their application. Here, simple, lightweight, and transparent modified clip cages were constructed using punched clear plastic cups, cut transparent polyvinyl chloride sheets, nylon organdy mesh, and bent duck-bill clips. These cages can be clipped directly onto dicot leaves or attached to monocot leaves with bamboo skewers and elastic bands. The weight, production time, and aphid escape rates of the modified clip cages were 3.895 ± 0.004 g, less than 3 min, and 2.154 ± 0.323%, respectively. The effects of the modified clip cage on the growth, development, and reproduction of the English grain aphid (Sitobion avenae Fabricius) in comparison with the whole cage were studied. The biochemical responses of wheat (Triticum aestivum) to the cages were also investigated. No significant differences were observed in the life table parameters, nymph mortality, and adult fecundity in S. avenae confined to clip cages and whole cages, but the clip cages were more time efficient than whole cages when conducting life table studies. Moreover, the hydrogen peroxide accumulation, callose deposition, and cell necrosis in wheat leaves covered by empty clip cages and empty whole cages were similar, and significantly lower than treatments where the aphids were inside the clip cage. The results demonstrate that the modified clip cages had negligible effects on the plant and aphid physiology, suggesting that they are effective for studying plant-small insect interactions.
Collapse
Affiliation(s)
- Xudan Kou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shichao Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yufeng Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jiuyang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Huan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| |
Collapse
|
6
|
Jakubska-Busse A, Czeluśniak I, Kobyłka MJ, Hojniak M. Why does an obligate autogamous orchid produce insect attractants in nectar? - a case study on Epipactis albensis (Orchidaceae). BMC PLANT BIOLOGY 2022; 22:196. [PMID: 35418038 PMCID: PMC9006510 DOI: 10.1186/s12870-022-03563-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/28/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND The flowers of some species of orchids produce nectar as a reward for pollination, the process of transferring pollen from flower to flower. Epipactis albensis is an obligatory autogamous species, does not require the presence of insects for pollination, nevertheless, it has not lost the ability to produce nectar, the chemical composition of which we examined by gas chromatography-mass spectrometry (GC-MS) method for identification of potential insect attractants. RESULTS During five years of field research, we did not observe any true pollinating insects visiting the flowers of this species, only accidental insects as ants and aphids. As a result of our studies, we find that this self-pollinating orchid produces in nectar inter alia aliphatic saturated and unsaturated aldehydes such as nonanal (pelargonal) and 2-pentenal as well as aromatic ones (i.e., syringaldehyde, hyacinthin). The nectar is low in alkenes, which may explain the absence of pollinating insects. Moreover, vanillin and eugenol derivatives, well-known as important scent compounds were also identified, but the list of chemical compounds is much poorer compared with a closely related species, insect-pollinating E. helleborine. CONCLUSION Autogamy is a reproductive mechanism employed by many flowering plants, including the orchid genus Epipactis, as an adaptation to growing in habitats where pollinating insects are rarely observed due to the lack of nectar-producing plants they feed on. The production of numerous chemical attractants by self-pollinated E. albensis confirms the evolutionary secondary process, i.e., transition from ancestral insect-pollinating species to obligatory autogamous.
Collapse
Affiliation(s)
- Anna Jakubska-Busse
- University of Wroclaw, Faculty of Biological Sciences, Department of Botany, 50-328, Wroclaw, Poland.
| | | | - Michał J Kobyłka
- University of Wroclaw, Faculty of Chemistry, 50-353, Wroclaw, Poland
| | - Marek Hojniak
- University of Wroclaw, Faculty of Chemistry, 50-353, Wroclaw, Poland
| |
Collapse
|